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Abstract— Activity recognition plays an essential role in
bridging the gap between the low-level sensor data and the high-
level applications in ambient-assisted living systems. With the
aim to obtain satisfactory recognition rate and adapt to various
application scenarios, a variety of sensors have been exploited,
among which, smartphone-embedded inertial sensors are widely
applied due to its convenience, low cost, and intrusiveness.
In this paper, we explore the power of triaxial accelerometer and
gyroscope built-in a smartphone in recognizing human physical
activities in situations, where they are used simultaneously or
separately. A novel feature selection approach is then proposed
in order to select a subset of discriminant features, construct
an online activity recognizer with better generalization ability,
and reduce the smartphone power consumption. Experimental
results on a publicly available data set show that the fusion
of both accelerometer and gyroscope data contributes to obtain
better recognition performance than that of using single source
data, and that the proposed feature selector outperforms three
other comparative approaches in terms of four performance
measures. In addition, great improvement in time performance
can be achieved with an effective feature selector, indicating the
way of power saving and its applicability to real-world activity
recognition.

Index Terms— Activity recognition, smartphone, accelerome-
ter, gyroscope, feature selection.

I. INTRODUCTION

ALONG with the development of sensor and sensor
network technology, a variety of advanced applications

are emerging in a large number of fields, ranging from
pervasive computing, security and surveillance to vehicle net-
work and healthcare. Also, sensor technology can potentially
facilitate many applications in a home setting such as activity
reminder, fall detection, rehabilitation instruction, and wellness
evaluation in assisted living systems [1]–[3], where activity
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recognition plays an increasingly important role in bridging the
gap between the low-level simple sensor data and high-level
meaningful applications, especially in the healthcare related
fields [4], [5]. In the application of wellness evaluation, for
example, considering the fact that activities of daily living are
closely related to the health state of an individual [2], then we
can deduce his/her health conditions by capturing the activities
performed by them in terms of location, start time, frequency
and duration. If we examine their activities for a long period of
time, we can detect the health state changes that are indicated
by changes in the activities, such as the Alzheimer’s disease
characterized by long-time sitting or lying down, and sleep
disorders with fragmented and shorter sleeping stages. Activity
recognition using various sensors, however, is not a trivial due
to the intrinsic nature of human activity. Different people may
perform the same activity in a different way, and even the same
person may perform an activity in a different manner at differ-
ent time, and there are situations where concurrent and inter-
leaved activities occur that makes it difficult to obtain robust
activity recognizer [6]. Consequently, activity recognition is a
challenging but active research area that has been drawing the
attentions of researchers from the community of data mining,
pervasive computing, medical and healthcare [2], [6], [7].

In activity recognition, different types of sensing technolo-
gies have been explored to improve the recognition rate and
adapt to a variety of application scenarios. Generally, they
can be broadly grouped into three categories: vision based
approach, environment interactive sensor based approach
and wearable sensor based approach [6], [8]. Vision-based
approaches mainly employ a camera or video to monitor and
recognize different activities [9]. Although they can provide
better recognition rate, the use of camera or video is not practi-
cal in many indoor environments particularly when the privacy
issue is considered. In addition, vision-based approaches often
suffer from illumination variations, ambient occlusion and
background change that greatly limits their actual use [9], [10].

For environment interactive sensor-based approaches, they
recognizes human physical activities by capturing the interac-
tion between the subjects and objects under the assumption
that there exists the underlying relation between objects and
activities [11]. For example, if a sensor embedded in a chair
is triggered, we infer that an individual is sitting on it; and if
we monitor that sensors that are placed on a bed are fired
for a period of time, someone is probably sleeping. Such
schemes could recognize human daily living activities such
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as washing, eating, bashing, sleeping and watching, but they
are generally costly and often limited to indoor scenarios [6].
Also, a complex process is required to set up and maintain
the system in order to make the whole system work normally.
Other issues include how to effectively and efficiently deploy
these sensors in appropriate places and appliances without
causing much inconvenience to users and how to correctly map
sensor readings to corresponding activity label in the process
of prediction model construction [11], [12].

Unlike environment interactive sensor based approach, the
miniature and flexibility of sensors makes it possible for an
individual to wear or carry mobile devices that are embedded
with various sensing units [13]. This kind of devices are
suitable for both indoor and outdoor settings, and can be
worn on many parts of the human body that ranges from
the upper (e.g. arm and wrist) to the lower (e.g. leg and
ankle) [14], [15]. Besides that, an individual can take more
than one mobile devices at the same time [16]. Correspond-
ingly, a wealth of researches have been conducted to explore
the potential of wearable devices for activity recognition
in a pervasive and ubiquitous way. Among these wearable
devices, smartphones have the benefit that it releases the
users from wearing additional sensing components, therefore,
activity recognition based on smartphones is promising and
attractive due to its non-intrusiveness and high acceptance
and adherence in daily life [17]. Also, modern smartphones
have powerful computing and communication capabilities that
enables us to process computation tasks locally and interact
with remote server efficiently [18]. In addition, smartphones
often contain several built-in sensors such as accelerometer,
gyroscope, GPS and camera, which we can use to gather
device-related information and its context [19]. Such a config-
uration and the increasing adoption of smartphones allow us
to use smartphones to collect and analyze activity-related raw
data and provide an alternative and economic way for activity
recognition.

With the aim to have a comprehensive understanding
of activity recognition with inertial sensors built-in a
smartphone, in this study, we plan to investigate the power
of accelerometer and gyroscope in activity recognition when
they are used simultaneously or separately, and further explore
the usefulness of feature selection methods in improving
recognition performance. In particular, the main contributions
of this paper are summarized as follows. (1) Activity
recognition framework: we present an activity recognition
framework that works in an offline training and online
prediction scheme. This helps optimize the parameter setting
and feature selection of the activity recognizer effectively and
make online prediction efficiently. In addition, it is a general
framework that can be applied to various classification and
regression tasks. (2) Feature selection method: we explore the
use of feature selection in activity recognition, and propose a
novel feature selection in order to improve the recognition rate
and reduce the time cost in prediction and associated power
consumption of smartphone. We also compare the proposed
method with three other state-of-the-art feature selectors.
(3) Choice of inertial sensors: we evaluate and compare the
power of the triaxial accelerometer and triaxial gyroscope, and

show their synthetic effects in recognizing human physical
activities. Besides, we perform feature selection on the data
collected from different sensors to comprehensively analyze
the power of inertial sensors. (4) Experimental evaluation:
we conduct extensive experiments and obtain several valuable
results that can help researchers make better decisions in
utilizing wearable and mobile devices for activity recognition.
For example, we observe that both the gyroscope and
accelerometer perform well in discriminating static activities
from dynamic activities, and that the fusion of gyroscope and
accelerometer contributes to the improvement in recognition
rate.

The rest of this paper is organized in the following way.
Section III presents the related work in activity recognition
and feature selection. Section III gives the proposed activity
recognition framework, details the data preprocessing and fea-
ture extraction procedures, as well as illustrates the proposed
feature selection method. In Section IV, we first describe
the experimental setup and performance measures, and then
present the experimental results from several aspects. The last
section concludes this study with a brief summary and points
out future research work.

II. RELATED WORK

A large number of researchers have conducted considerable
work in exploring different sensing technologies and proposed
a number of methods to model and recognize human activi-
ties [13], [20]. In actual use, there are a variety of sensors
that are available for use, among which, wearable devices
that are embedded with accelerometer, gyroscope, GPS and
other sensors have proven to be effective and are gaining
popularity. Particularly, researchers have constructed various
activity recognition systems that utilized accelerometers to
infer body-position, due to the fact that an accelerometer
can offer us acceleration and velocity information largely
associated with different human physical activities [21]–[24].
For instance, Bao and Intille used five small biaxial accelerom-
eters that were worn simultaneously on different parts of the
body (four limb positions plus the right hip) to collect sensor
data when an individual performed daily tasks [21]. They then
extracted both time-domain and frequency-domain features
and constructed a classification model to recognize twenty
activities [21]. In experiments, they collected experimental
data from twenty volunteers and compared the recognition rate
of several different classifiers. Experimental results showed
that decision tree classifier can obtain the best performance
with an accuracy of 84.0%. Tapia et al. proposed to implement
a real-time system that can recognize physical activities as
well as their intensities using a heart rate monitor and five
triaxial accelerometers placed on right arm, right leg and the
waist [7]. They applied the system to recognize thirty physical
gymnasium activities and obtained a 94.6% subject-dependent
recognition rate and 56.3% subject-independent accuracy, and
can obtain 80.6% accuracy without differentiating the activity
intensities. Although the use of multiple accelerometers that
are simultaneously attached to a human body leads to a
better recognition rate [25], [26], this kind of approach defi-
nitely causes inconvenience to users because of the complex



4568 IEEE SENSORS JOURNAL, VOL. 16, NO. 11, JUNE 1, 2016

system configuration. Hence, this may prevent users from
getting involved in a long-term setting, and motivates the use
of a single sensor [27].

Rather than use multiple sensors, for example, Ravi et al.
carried out a study to explore the possibility of activity
recognition with a single triaxial accelerometer [14]. In the
phase of data collection, they used an accelerometer mounted
onto the pelvic region of an individual to collect raw
accelerometer data about eight activities, including standing,
walking, running, upstairs, and downstairs, sitting, vacuuming,
and brushing teeth. They then proposed to construct a meta-
level classifier that consisted of decision table, decision tree,
k-nearest-neighbor, support vector machine, and naïve bayes.
To evaluate the effectiveness, extensive experiments were
conducted under four different dataset settings, and their
results showed that in comparison with base-level classifier,
meta-level classifier with plurality voting generally tends to
achieve better performance. Khan et al. also investigated the
power of a single triaxial accelerometer in human activity
recognition [23]. In their study, the accelerometer was required
to attach to the chest of an individual in a particular orientation.
They then proposed a hierarchical prediction model to classify
static, dynamic and transitional activity, applied the model to
recognize fifteen activities in a natural setting and obtained
satisfactory recognition accuracy. In comparison with the
use of multiple accelerometers, activity recognition with a
single accelerometer may be unable to discriminant similar
activities, such as downstairs and upstairs [28].

In addition, there are studies that explored the fusion
of different kinds of sensors for human activity recogni-
tion [29], [30]. For example, Lee and Masc built a system
that consisted of a biaxial accelerometer, a gyroscope and a
digital compass to infer a user’s location and classify siting,
walking and standing activities [31]. Yun et al. proposed to
use a triaxial accelerometer, a triaxial angular rate sensor and a
magnetometer to collect foot motion related data for estimating
foot kinematics [32]. Their system was able to extract infor-
mation about foot orientation, velocity, acceleration, position
and gait phase, and obtain relatively low estimation error.
Huynh et al. explored the use of an accelerometer and a
gyroscope to construct a wireless and wearable fall detec-
tion system and proposed a critical threshold based activity
recognition algorithm to differentiate falls from non-falls [30].
In their study, the sensing unit was attached to the chest center
to collect motion data under different daily activities such
as standing, walking, sitting, running and four fall schemes
(forward, backward, right and left sideway).

Nowadays, with increasing power of smartphones in
computation and communication, they are often embedded
with GPS, accelerometers, gyroscopes, and a digital compass,
and are able to process computation tasks locally and
interact with remote server efficiently. Particularly, among
the smartphone sensors, GPS that are commonly used in
location-based services, can locate one’s current position and
track the trace. The triaxial accelerometer measures the proper
acceleration and can be used to obtain the acceleration of three
orthogonal axes: forward acceleration in y-axis, horizontal
movement acceleration in x-axis, and vertical acceleration

in z-axis. It contains information to recognize different
activities, for example, discriminating walking upstairs from
walking downstairs with the acceleration values of z-axis in the
two different cases. For the triaxial gyroscope, it provides the
angular acceleration information of the smart phone from three
different views, and can be used to estimate the orientation
and rotation of the movement with the help of the pitch, roll
and yaw attitude angles. Consequently, smartphones provide
us an alternative way for activity recognition [33]. Besides, the
use of smartphones can release users from wearing additional
sensing components for data collection and procession, and is
feasible for long-term activity monitoring due to its relatively
low intrusiveness and high adherence in daily life [34]. For
example, Dernbach et al. demonstrated the possibility of
using the inertial sensor data collected from android-based
smart phones to recognize simple activities such as biking,
climbing, sitting, walking, running and standing, as well as
complex activities such as cleaning, cooking, washing and
watering [17]. Chiang et al. used an android-based smartphone
embedded with an accelerometer and GPS to record activity
patterns for self-wellness management. In the study, they
considered nine activities and evaluated the system with four
different classifiers [35]. Anjum and Ilyas built a smartphone
application to detect seven human physical activities and
further to estimate calories consumption [19], and they
collected 510 activity traces and evaluated the effectiveness
with the k-nearest-neighbor, naïve bayes, and support vector
machine and decision tree classifiers. For smartphone-based
activity recognition, besides pursing high accuracy, energy
saving and real-time response are two important and critical
factors in improving user experience [36].

In terms of accuracy and energy consumption, the quality
and the number of used features matters. There are a plenty of
researches that aim to extract important features in both time-
domain and frequency-domain from the raw senor signal with
prior knowledge [23], [37], [38], while few studies, to the best
of our knowledge, optimize the selection of features in a data-
driven way. In data analysis, a subset of best individual feature
may not be a best subset of features because of the redun-
dancy among features, and redundant features may deteriorate
the performance of k-nearest-neighbor classifier [39]. Feature
selection aims to reduce the feature dimensionality by select-
ing a small subset of discriminant features. It helps improve
the classification accuracy and the generalization ability of a
classifier, lower the time cost and lengthen the battery usage
time in activity recognition [40]. Accordingly, how to select
powerful features remains a research topic, and an effective
feature selection algorithm is desirable in actual use.

III. ACTIVITY RECOGNITION

WITH SMARTPHONE SENSORS

A. Proposed Activity Recognition Model

There are a variety of classification models available for use.
According to the availability of data labels, we can broadly
group them into three categories: supervised learning models
working with labelled data, unsupervised learning models
without data labels, and semi-supervised learning techniques
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Fig. 1. Proposed smartphone-based activity recognition framework.

that can utilize both labelled and non-labelled data [33]. The
widely applied approach to activity recognition is to apply the
supervised learning with an explicit training phase in order
to pursue high accuracy. In activity recognition, supervised
learning typically consists of three stages. In the first phase,
a stream of sensor data is divided into segments where a
sliding window technique is used. Specifically, a window with
a fixed/varied length or fixed/varied number of sensor events
is shifted along the stream with (non-) overlapping between
adjacent segments [6], [41]. The next step is to extract features
from the segments and represent the raw sensor data with
feature vectors, and then construct and train the classification
model over these extracted features. The last task is to use the
obtained classifier to associate a stream of sensor data with a
predefined activity. In the setting of smartphone-based activity
recognition, considering the limited processing power and
battery life [36], we propose the following scheme: training the
classification model offline and recognizing activities online.
Fig. 1 presents the proposed activity recognition framework.
In this study, we focus our attention on the use of the built-in
triaxial accelerometer and gyroscope. Therefore, there are two
types of data generated by a smartphone.

In the offline training phase, we first extract features
from the collected sensor data. In this stage, various time-
domain and frequency-domain features such as mean, standard
deviation, entropy, energy and correlation coefficient, are to
be extracted from the accelerometer and gyroscope in each
segment and form a feature vector to represent the segment.
The feature vector together with corresponding label constitute
a training sample. We then conduct feature selection on the
training set to select a subset of discriminant features from
the original feature space in order to remove irrelevant and
redundant features. Last, we can train and optimize an activity
recognizer, and deploy the model on the smartphone rather
than re-train the classifier. In the online prediction phase,
activity recognition is performed on the smartphone in order
to make real-time response. The sensor data generated by
the inertial sensors is first segmented into frames using the
same processing techniques as the offline stage. We then
extract features from the segment in accordance with the ones
obtained via the feature selection algorithm, and get a feature
vector. The activity recognizer finally gives the activity label
of interest associated with the feature vector.

Fig. 2. Two types of sliding window techniques. (a) Non-overlapping.
(b) Overlapping.

B. Feature Extraction
In activity recognition, we are required to divide the time-

series sensor data into segments before extracting features,
since standard classification models are not suitable for this
type of data. In handling time-series data, the sliding window
technique is widely used and has proven effective [6], [42].
According to whether there exists overlapping part between
two consecutive windows, it has two classical schemes: sliding
window without overlapping, and sliding window with over-
lapping. For the purpose of illustration, Fig. 2 presents two
schemes with an example of segmenting the accelerometer
signal, where ax , ay , and az represent the three components
of a triaxial accelerometer, �t means the window length, and−→at refers to the readings of ax , ay , and az in the period of time
[t , t +�t]. In the case of non-overlapping, −→at and −−→at+1 come
from different periods of time, as shown in Fig. 2(a). For the
overlapping situation, −→at and −−→at+1 share parts of the sensors
readings. Generally, the sliding window with overlapping has
better smoothness property and is more suitable for analyzing
continuous data.

Next, we extract informative features from the each
window before training the activity recognizer. In actual use,
researchers try to extract as many as features in the time-
domain as well as in the frequency-domain in order to capture
the slight differences between different activities. For the
triaxial accelerometer and triaxial gyroscope embedded in a
smartphone, in order to compare their power and evaluate their
synthetic effects in recognizing activity, we note the window
related to the accelerometer as −→at , and the gyroscope-related
window as

−→
bt . −→at and

−→
bt may contain different number of

readings, but are of equal window size �t . Assume that the
sampling frequency is p, then there are N = p∗�t readings
in a window. For the triaxial accelerometer, each readings
consists of ax , ay , and az corresponding to the three axes,
and there are N readings for each axis, which can form a
vector with length N . We can extract a variety of statistical
features that are previously shown to be effective for activity
recognition. In the time-domain, according to the N readings
in a single window, for each axis, we can calculate the mean
value, standard deviation, maximal value, minimal value,
median absolute deviation, signal magnitude area, energy
measure, signal entropy, interquartile range, autoregression
coefficients with different orders, time in milliseconds
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between peaks, and other measures [14], [23], [43], [44].
In addition, we can extract useful features when considering
the relationship of different axes, such as the correlation coeffi-
cients between two signals, the angle between two vectors, and
the uncorrelated energy between two axes, and the mean value
in a single window [43]. Besides these, we can apply the Fast
Fourier Transform algorithm (FFT) to extract the frequency
components [33]. In the frequency domain, for each axis, com-
monly used features include, but not limited to, the frequency
component with largest magnitude, the weighted average of
the frequency components, skewness of the signal, kurtosis
of the signal, and the signal energy and entropy [33], [43].
Also, we can extract those statistical features as in the time
domain. Similarly, for the triaxial gyroscope, each readings
consists of bx , by , and bz corresponding to the three axes.
We can extract the statistical features from both the time-
and frequency-domain. When using the accelerometer and
gyroscope simultaneously, we can obtain extra features

h(−→at ,
−→
bt ). For example, we can calculate the angle between

the body gyroscope and the gravity acceleration signal [43].
Particularly, to indicate that the features are extracted from

which one of the two sensing units, we note the accelerometer
related features as Fa = f (−→at ), gyroscope related features as
Fb = g(

−→
bt ), and hybrid features as F = Fa ⊕ Fb ⊕h(−→at ,

−→
bt ),

where f , g, and h are named the feature extraction functions,
⊕ is the concatenation function to merge several feature
vectors into a single vector. Therefore, we can obtain three
subsets of features for further analysis.

C. Proposed Feature Selection Method

In the feature extraction stage, researchers tend to extract
a large range of time-domain and frequency-domain features
from (each) components of the accelerometer and gyroscope
in order to better characterize the original sensor signal. This
may introduce irrelevant and redundant features and deterio-
rate the performance of the activity recognizer, therefore, a
feature selection process is favorable in order to obtain better
recognition rate and reduce the time cost in online prediction.
Generally, feature selection methods can be categorized into
two groups: filter-based and wrapper-based methods [39], [45].
Filter-based methods are independent from a classifier, and
have lower computational complexity and better generalization
ability. Because filter methods evaluate the quality of a feature
or a subset of features by using only the intrinsic properties
of the training samples, they are flexible in combination with
a variety of classifiers. In contrast to filter methods, wrapper
methods are specific to a given classifier to evaluate the quality
of a candidate subset, and these methods tend to obtain better
classification performance than the filter methods at the cost
of a high time complexity [29].

In this study, we propose to hybridize the filter and wrap-
per methods to achieve the tradeoff between time cost and
accuracy. The proposed method consists of two stages. In the
first phase, we evaluate the importance of each feature in the
original feature space F using ReliefF algorithm and rank
all the feature in descending order. ReliefF is distance-based
filter measure and has great power in selecting discriminant

Fig. 3. Proposed feature selection method.

features [45]. However, the obtained feature ranking fails
to consider the interaction between features. Consequently,
ReliefF may obtain a subset of high ranking features with
redundancy among them, and discard the features that are
ranked behind but can improve the recognition rate when
combined with others. To alleviate this problem, in the second
stage, we further use the sequential forward selection scheme
and take the classification accuracy as the feature inclusion
metric to find the best combination of features in a wrapper
way. Specifically, after using ReliefF, we can obtain a sequence
of ranked features R according to their relevance to the target
variable. The first feature in R is the most relevant to the target
and the last one is the least relevant to the target. Then, starting
from the first feature, we incrementally add feature f from the
sequence of ranked features to the selected subset of features S
by testing whether f satisfying the inclusion criteria. If f
satisfying the criteria, then we select f into S, update the
current classification accuracy, and evaluate the next candidate
feature in R; otherwise, we skip f and evaluate the next
candidate features. Continue the above procedure until all the
features have been evaluated. Fig. 3 presents the pseudo-code
of the proposed feature selection algorithm. For illustration
purpose, we note the proposed hybrid method as FW. In this
study, we adopt the following criteria to decide whether a
new feature f is added to the selected feature subset S:
(1) a five-fold cross validation scheme is employed, and
(2) the new feature f is included only if the average accuracy
of the five-fold cross validation over Data↓{S∪ f ∪C} is better
than that of the five-fold cross validation over Data↓{S∪C} and
at least count of the five-folds works well. count is actually a
counter for recording how many times the five classification
accuracy obtain over Data↓{S∪ f ∪C} is better than the average
accuracy of the five-fold cross validation over Data↓{S∪C}.
C is the target variable, and Data↓{S∪C} represents projecting
the dataset Data over its attributes S and C . For better control
of noise and over-fitting, the recommended empirical values
for count are two or three. In Fig. 3, line 1 is the filter
stage, lines 2-9 represents the wrapper stage, and line 6
indicates the inclusion criteria. The returned items of the
function evaluate(classifier, Data↓{Snew∪C}) include the aver-
age classification accuracy Snew over Data↓{S∪ f ∪C} and the
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number num indicates how many times the five classification
accuracies over Data↓{S∪ f ∪C} are better than the average
classification accuracy over Data↓{S∪C}. classifier stands for
the used learning algorithm in wrapper methods. Such a
method enables us to select relevant features efficiently and
avoids the situation where low ranked features have no chance
to be chosen.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup and Experimental Dataset

Since one of our tasks is to show and compare the power
of triaxial accelerometer and triaxial gyroscope embedded
in a smartphone in human activity recognition when they
are used simultaneously or separately, we plan to evaluate
the recognition performance in the following three settings:
(1) only sensor data generated from the gyroscope component
are used; (2) only the triaxial accelerometer related data are
considered; (3) both accelerometer and gyroscope data are
involved. Obviously, we treat the accelerometer and gyroscope
separately in the former two cases, and consider their synergic
effects in the last case, which enables us to extract and
obtain a discriminant subset of features to differentiate very
similar activities such as sitting and standing. Consequently,
such a setting is reasonable and sufficient to fulfill the
task.

Our next task is to explore the use of feature selection
methods in building an effective activity recognizer.
In wrapper-based feature selection, a classifier is required and
used to measure the quality of a candidate feature. In addition,
to evaluate the power of a feature selection method, a classifier
is also required to evaluate the quality of the finally selected
feature subset. In our study, two commonly used learning
algorithms with different metrics are applied, i.e. naïve bayes
and k-nearest-neighbor. Particularly, naïve bayes classifier
is sensitive to redundant features and irrelevant features
deteriorate the performance of k-nearest-neighbor classifier.
Also, we use the same learning algorithm for selecting features
and verifying the goodness of obtained feature subset. Besides,
to show the benefits and superiority of the proposed feature
selection method FW in improving recognition rate and
time performance, we compare it with three other feature
selection methods: principal component analysis (PCA) [46],
fast correlation-based filter (FCBF) [40] and wrapper method
with sequential forward selection (Wrapper) [35]. For FW, to
better control noise and overfitting, count usually takes the
value of 2 or 3, and we set count = 2 in our study since
it leads to a better performance. In addition, we note the
method without using feature selection as “Original”.

PCA is a feature extraction method, and it reduces the
feature dimensionality by transforming the original data to
a lower dimensional feature space. PCA first calculates
the data covariance matrix, and its associated eigenvalues
λ = (λ1, λ2, . . . , λm ) and eigenvectors ν = (ν1, ν2, . . . , νm).
In the dimensionality reduction step, the eigenvectors per-
taining to the k (k ≤ m) largest eigenvalues are kept [46].
In our study, we choose to keep threshold = 99.0% variance
information of the raw data, and determine the minimal value

of k using (1).

∑k

j=1
λ j/

∑m

j=1
λ j ≥ threshold (1)

FCBF is a filter-based feature selection [40]. It obtains
the final feature subset with a two-stage procedure. In the
first phase, FCBF filters out those features whose relevance
with the target class is less than a predefined threshold γ .
It further eliminates redundant features using Markov blanket
technique in the later phase. For FCBF, we set γ = 0,
indicating that irrelevant features are removed in the
first stage.

Wrapper adopts a greedy search strategy to incrementally
select features. Starting from an empty set, Wrapper first
selects the feature that is most relevant to the target class,
and then searches for the next candidate feature that most
contributes to the enhancement of the classification accuracy.
Continue the process until there is no improvement in accuracy
or there is no remaining candidate feature. In feature selection,
Wrapper evaluates only O((S +1)N) candidate feature subsets
if S features are finally selected and O(N2) feature subsets in
the worst case on a data set with N features.

In order to evaluate the performance of the proposed activity
recognition framework, we conducted extensive experiments
on a publicly available dataset that was collected by the
triaxial accelerometer and triaxial gyroscope embedded in
a Samsung Galaxy S II smartphone [43]. The smartphone,
running the Android operating system, is equipped with a dual-
core cortex-A9 CPU (1.2 GHz processor and 1GB RAM), and
has a removable Li-Ion 1650 mAh battery and can work for
several hours continuously. The acceleration is measured with
the STMicroelectronics K3DH 3-axis accelerometer, which is
accurate to ±2G with resolution = 0.0625 (G is the gravita-
tional constant), and the angular velocity is obtained by the
K3G gyroscope sensor with the maximum range of 8.72665
and resolution = 0.000305433. The dataset was collected
when each of the thirty volunteers aged between nineteen and
forty-eight performed activities with a smartphone attached
to the waist. The accelerometer and gyroscope worked at a
sampling rate 50Hz.The task on this dataset is to distinguish
the following six human physical activities: walking, upstairs,
downstairs, sitting, standing and lying. These activities are
closely related to the daily activity level and functional health
of an individual, and can be an indicator for the occurrence
of falls. The dataset was pre-processed and segmented with a
fixed-length sliding window of 2.56 seconds and fifty percent
overlap between two adjacent segments. Therefore, there were
128 sensor readings in a single window. In addition, we
extract a range of features associated with the accelerometer
and gyroscope in both time domain and frequency domain.
Consequently, 348 features were extracted from accelerometer
data with 164 time-domain features and 184 frequency-domain
features. For the gyroscope component, 106 features were
extracted in time domain and 105 features were from the
frequency domain. When the accelerometer and gyroscope are
used, two extra features were extracted in the time domain.
Also, each sample was manually labeled with its activity label.
In total, there are 7352 training samples and 2947 test samples.
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TABLE I

EXPERIMENTAL DATA DESCRIPTION

TABLE II

CONFUSION MATRIX FOR A THREE-CLASS CLASSIFICATION PROBLEM

Table I summarizes the dataset, and “Both” indicates
accelerometer and gyroscope.

B. Performance Measures

To evaluate the effectiveness of the proposed feature selector
and show its superiority over the comparative methods, we
compare them in terms of the number of selected features,
the obtained classification performance, and the actual running
time in prediction. In the evaluation of the activity recog-
nizer, a confusion matrix that contains the actual outputs and
predicted outputs is applicable to evaluate the classification
performance [47]. Table II presents an example of confusion
matrix for activity recognition in the case of three activities.
Accordingly, we can use the following four measures to show
the classification performance, and the higher precision, recall,
F1 and accuracy, the better the constructed recognizer.

(1) Precision represents the weighted average of the fraction
of the inferred activity labels that are correctly predicted for
each activity class. For a classification problem with C classes,
Precision can be calculated with (2).

Precision = 1

C

C∑

i=1

T Pii

N Ii
, (2)

where TPii is the number of test samples that are corrected
classified for the inferred label i ; NIi shows the total number
of test samples that are classified as label i , and equals the
sum of the number in corresponding row.

N Ii = T Pii +
C∑

j=1, j 	=i

F Pi j (3)

(2) Recall refers to the weighted average of the fraction of
the true activity labels that are correctly classified for each
activity class. For a classification problem with C classes,
we can measure Recall using (4).

Recall = 1

C

C∑

i=1

T Pii

NTi
, (4)

TABLE III

EXPERIMENTAL RESULTS OF THE NUMBER OF SELECTED FEATURES
AND CLASSIFICATION ACCURACY USING NAÏVE BAYES

TABLE IV

PRECISION COMPARISON USING NAÏVE BAYES

where NTi indicates the number of test samples with true
label i , and can be obtained by totaling the number of
corresponding column.

NTi = T Pii +
C∑

j=1, j 	=i

F Pj i (5)

(3) F1 provides a way to combine precision and recall
into a single metric, is calculated using (6). F1 takes a real
number between 0 and 1, and 1 indicates that the classifier
can correctly classify all test samples.

F1 = 2 ∗ precision ∗ recall

precision + recall
(6)

(4) Accuracy means the probability of correctly classifying
each sample, and equals the number of samples that are
correctly grouped. Equation (7) present the formula, where
total indicates the total number of test samples.

Accuracy =
∑C

i=1 T Pii

total
=

∑C
i=1 T Pii∑C
i=1 N Ii

=
∑C

i=1 T Pii∑C
i=1 NTi

. (7)

C. Experimental Results

We conducted experiments on a desktop with a 3.2GHz
processor and 4G memory storage. For the KNN classi-
fier, 1NN was used as the learning function. Tables III-V
present the experimental results of the number of used fea-
tures, accuracy, precision and F1 in the case of naïve bayes.
Tables VI-VIII present the experimental results using
k-nearest-neighbor. The last row “Both” in each table refers
to the results obtained by using both accelerometer and gyro-
scope data.

1) Accelerometer vs. Gyroscope vs. Both: In this subsection,
we analyze the power of accelerometer and gyroscope when
they are used separately and simultaneously in the situation
where the feature selection method is not involved. This helps
determine whether there exist irrelevant and redundant ones in
the extracted features. According to the experimental results
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TABLE V

F1 COMPARISON USING NAÏVE BAYES

TABLE VI

EXPERIMENTAL RESULTS OF THE NUMBER OF SELECTED FEATURES AND

CLASSIFICATION ACCURACY USING k-NEAREST-NEIGHBOR

TABLE VII

PRECISION COMPARISON USING k-NEAREST-NEIGHBOR

TABLE VIII

F1 COMPARISON USING k-NEAREST-NEIGHBOR

shown in Tables III-VIII. We can observe that the use of the
triaxial accelerometer consistently obtains better performance
than that of using the triaxial gyroscope in terms of accuracy,
precision, and F1. Specifically, for naïve bayes, the use of
accelerometer obtains 81.1% accuracy, 82.6% precision and
81.5% F1, while the use of gyroscope only obtains 50.8%
accuracy, 55.0% precision and 53.4% F1. In the case of
1-nearest-neighbor classifier, the use of gyroscope achieves
65.8% accuracy, 66.4% precision and 66.3% F1, respectively,
which is significantly lower than that of the accelerometer
with 84.3% accuracy, 84.5% precision and 84.3% F1. This
indicates that the acceleration contains more discriminant and
valuable information than the angular velocity in human activ-
ity recognition, demonstrating the superiority of accelerometer
over gyroscope.

Furthermore, it has been known to us that the gyroscope
and accelerometer can provide relatively novel features to
each other. For example, the accelerometer has the capacity
to obtain the acceleration, while the gyroscope can measure
the angular velocity. However, from Tables III-VIII, we can
observe that the fusion of both accelerometer and gyroscope

data fails to guarantee better performance all the time. Specif-
ically, in the case of naïve bayes, we obtained 77.0% accuracy
with the accelerometer and gyroscope, which was lower than
81.1% of the accelerometer. Also, in terms of F1, using
accelerometer and gyroscope contributes to the enhancement
in the activity recognition rate. Accordingly, the data fusion
improves the accuracy, precision and F1 to 87.8%, 88.0% and
87.7%, respectively, from the corresponding 65.8%, 66.4% and
66.3% of the gyroscope and the 84.3%, 84.5% and 84.3% of
the accelerometer. The possible reason for this outcome is that
there exists redundant features provided by the accelerometer
and gyroscope and that naïve bayes classifier is built under
the assumption of conditional independence among features.

2) With vs. Without Feature Selection: In this subsection, we
show the benefits of feature selection methods and evaluate the
effectiveness of the proposed feature selector. Tables III-VIII
present the results that are obtained without feature selection as
well as the results obtained with our proposed feature selection
method and its three comparative ones. According to the exper-
imental results, we can observe that the application of feature
selection method not only greatly reduces the feature dimen-
sionality, but also achieves better classification performance
except for the situation where k-nearest-neighbor classifier is
used on the gyroscope data. Specifically, for naïve bayes, in
terms of the number of selected features, PCA can reduce
the number of gyroscope-related features from 211 to 78, the
number of accelerometer-related features from 348 to 104,
and reduce the total number of features to 178. In terms of
classification performance, PCA can obtain 66.6% accuracy
on the gyroscope data, 83.3% accuracy on the accelerometer
data, and 85.2% accuracy over the combined data. FCBF
can improve the accuracy to 63.0%, 85.6% and 88.2% on
the gyroscope data, accelerometer data and the combined
data, respectively. Significantly, FCBF uses 15, 19 and 34
features in achieving such a high classification. For Wrapper,
the number of selected features is similar to that of FCBF,
and it can achieve slightly better classification performance.
In comparison with PCA, FCBF and Wrapper, our proposed
method FW can obtain the best classification performance,
although the number of selected features is more than the
ones that are obtained by FCBF and Wrapper. In the aspect
of precision, recall and F1, we can draw conclusions similar
to accuracy. For k-nearest-neighbor, FW selects 96, 58 and 66
features from the gyroscope data, accelerometer data and the
combined data, respectively. Although the number of features
selected by FCBF and Wrapper is less than that of FW, FW
outperforms them in terms accuracy, precision, recall and F1.
For example, FW can obtain 87.7% F1, which is 5.1% higher
than that of FCBF and 4.2% higher than that of Wrapper. In
comparison with Original and PCA methods, FW can select
a more compact subset of features. This helps to construct an
activity recognizer with better generalization ability.

Besides, we can also observe that the fusion of gyroscope
data and accelerometer data consistently obtains better
classification performance than that of using only gyroscope
data or accelerometer data in the situation where feature
selection is performed. In the case of naïve bayes, for FCBF,
it obtains 88.2% accuracy, 88.4% precision and 88.1% F1 over



4574 IEEE SENSORS JOURNAL, VOL. 16, NO. 11, JUNE 1, 2016

Fig. 4. Accuracy comparison of the different feature selection methods.
(a) Using Naïve Bayes classifier. (b) Using k-nearest-neighbor classifier.

Fig. 5. Precision comparison of the different feature selection methods.
(a) Using Naïve Bayes classifier. (b) Using k-nearest-neighbor classifier.

the combined data, which are higher than that obtained over
the gyroscope data as well as over the accelerometer data. For
Wrapper, it obtains 83.7% accuracy over the combined data,
which is 0.7% higher than the one over the accelerometer
data and 50.1% higher than the one over the gyroscope
data. For FW, it improves the classification accuracy from
77.0% to 90.1% over the hybrid data, and obtains 88.1%
accuracy over the accelerometer data. The k-nearest-
neighbor classifier can obtain similar results to naïve bayes.
This indicates that directly working on the hybrid data
without feature selection cannot guarantee achieving better
classification performance than that over single-source data,
and that an effective feature selector is desirable to eliminate
irrelevant and redundant features.

In order to present an intuitive impression of the experimen-
tal results obtained with different feature selection methods
over the three different types of data, Figs. 4–7 show the results
of accuracy, precision, recall and F1, respectively. In each
figure, we present the results of k-nearest-neighbor as well
as naïve bayes. Generally, we can come to three conclusions:
(1) recognizing human activities with the accelerometer can
obtain better performance in terms of the four metrics;
(2) hybridizing the accelerometer and gyroscope data has
superiority over the single-source data in achieving bet-
ter recognition rates; (3) the proposed feature selector
FW outperforms its comparative ones in accuracy, precision,
recall and F1, which demonstrates the effectiveness of FW.

To better show the synthetic effects of the accelerometer and
gyroscope, we present the number of selected features over
the combined data for naïve bayes and k-nearest-neighbor, and
give how many features of them are from the accelerometer
and the gyroscope, respectively. Table IX presents

Fig. 6. Recall comparison of the different feature selection methods.
(a) Using Naïve Bayes classifier. (b) Using k-nearest-neighbor classifier.

Fig. 7. F1 comparison of the different feature selection methods.
(a) Using Naïve Bayes classifier. (b) Using k-nearest-neighbor classifier.

TABLE IX

NUMBER OF SELECTED FEATURES OVER THE COMBINED DATA

corresponding results, in which the second column “#both”
means the total number of selected features, the third column
“#accelerometer” indicates how many of them are related
to the accelerometer, and the fourth column “#gyroscope”
corresponds to the gyroscope. We can observe from Table IX
that the finally selected features come from both accelerometer
and gyroscope, which partially explains the superiority of
the fusion of accelerometer and gyroscope data over the
single sensing component in human activity recognition.
We can also see that the two feature subsets selected by naïve
bayes and k-nearest-neighbor are different, implying that our
proposed method is specific to the learning algorithm.

Additionally, in order to gain a better insight into
the activity recognition problem and the proposed feature
selection method FW, the corresponding confusion matrix was
constructed. Tables X-XII show the results using naïve bayes
and FW over the gyroscope, accelerometer and the hybrid data,
respectively. Experimental results about k-nearest-neighbor are
presented in Tables XIII-XV. According to the results, we can
observe that the single use of gyroscope or accelerometer can
distinguish dynamic activity (walking, upstairs and downstairs)
from static activity (sitting, standing and lying) with a high
accuracy. Specifically, for naïve bayes, activity recognition
with the hybrid data makes 15 classification errors out of
the 2947 test samples, compared to the 28 errors of using
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TABLE X

CONFUSION MATRIX FOR ACTIVITY RECOGNITION WITH
GYROSCOPE USING NAÏVE BAYES AND FW

TABLE XI

CONFUSION MATRIX FOR ACTIVITY RECOGNITION WITH

ACCELEROMETER USING NAÏVE BAYES AND FW

the gyroscope and 7 errors of using the accelerometer. For
k-nearest-neighbor, it makes 5, 0 and 1 errors when
conducting on the gyroscope data, accelerometer data and
the hybrid data, respectively. Furthermore, we can also
observe that the accelerometer has the superiority over
the gyroscope in distinguishing lying from sitting and
standing. For example, for naïve bayes, in Tables X-XI,
the use of gyroscope mistakenly predicts 151 sitting test
samples and 118 standing test samples to be with lying
labels, and classifies 47 lying test sample to sitting and
29 lying test samples to standing. In contrast, the use of
accelerometer can accurately differentiate between lying
and other two activities. In addition, we can observe that
combining gyroscope and accelerometer data contributes to
classify similar activities, such as sitting vs. standing, upstairs
vs. downstairs. For instance, according to Tables X-XII,
we can see that it makes 225 errors over the gyroscope
data, 193 errors over the accelerometer data in distinguishing
between sitting and standing, and reduces it to 144 errors
with the combined data. Results in Tables XIII-XV show that
in differentiating upstairs and downstairs, the combined data
results in 48 errors in comparison to the 111 errors over the
gyroscope data and the 65 errors over the accelerometer data.

3) Time Cost(s) Comparison: In the online activity recogni-
tion, besides accuracy, the time complexity in making predic-
tion is another important factor that is worthy of consideration.
For the case of smartphone, the higher time cost definitely
consumes more battery energy. Consequently, this inevitably
shortens the time of service and affects user experience.
In this subsection, we investigate and compare the time
performance of the four feature selection methods. We also
present the experimental results without using feature selec-
tion as a comparison, as shown in Tables XVI and XVII.

TABLE XII

CONFUSION MATRIX FOR ACTIVITY RECOGNITION WITH
ACCELEROMETER AND GYROSCOPE USING

NAÏVE BAYES AND FW

TABLE XIII

CONFUSION MATRIX FOR ACTIVITY RECOGNITION WITH

GYROSCOPE USING k-NEAREST-NEIGHBOR AND FW

TABLE XIV

CONFUSION MATRIX FOR ACTIVITY RECOGNITION WITH

ACCELEROMETER USING k-NEAREST-NEIGHBOR AND FW

TABLE XV

CONFUSION MATRIX FOR ACTIVITY RECOGNITION WITH

ACCELEROMETER AND GYROSCOPE USING

k-NEAREST-NEIGHBOR AND FW

Meanwhile, we provide the time cost comparison in the form
of graph, as shown in Fig. 8. According to the experimen-
tal results, we can observe that the use of feature selec-
tion methods helps reduce the actual time cost significantly
over all of the three different types of data. Furthermore,
we can observe that FCBF and Wrapper are more efficient
than PCA and FW, and that FW outperforms PCA. Over the
accelerometer data, it costs 69.4 seconds with all the features,
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TABLE XVI

TIME COST(S) COMPARISON USING NAÏVE BAYES

TABLE XVII

TIME COST(S) COMPARISON USING k-NEAREST-NEIGHBOR

Fig. 8. Time cost comparison of the different feature selection methods.
(a) Using Naïve Bayes classifier. (b) Using k-nearest-neighbor classifier.

while FW reduces it to 14.5 seconds in comparison with
23.4 seconds of PCA, 4.7 seconds of FCBF and 3.6 seconds
of Wrapper. Also, working in a feature space with higher
dimensionality, activity recognition with all the features costs
147.5 seconds. In contrast, it takes PCA 48.6 seconds, FCBF
5.7 seconds and Wrapper 4.1 seconds, and FW is 11.0 times
faster than the Original. Similarly, for k-nearest-neighbor, as
shown in Table XVII and Fig. 8(b), compared with the Original
method, this case leads to 3.2-, 17.2-, 33.3-, and 5.6-fold
improvements in the average time cost(s) for PCA, FCBF,
Wrapper and FW, respectively.

Overall, according to the experimental results and in-depth
analysis, we conclude that FW obtains comparable perfor-
mance to PCA in terms of accuracy, precision, recall and
F1 while having lower time complexity. Also, in comparison
with FCBF and Wrapper, although FCBF and Wrapper have
better time performance than FW, FW consistently achieves
better classification performance than FCBF and Wrapper.
Considering that the primary goal is to pursue high accuracy,
therefore, FW is a better choice towards a tradeoff between
accuracy and time cost.

V. CONCLUSION

In assisted living systems, human activity recognition helps
bridge the gap between the low-level sensor data and the
high-level human-centric applications, and plays an increasing
important role in improving the life quality and promoting
health at an individual as well as the population level. Among
the various available sensing components, the inertial sensing
units built-in a smartphone are widely used due to its conve-
nience, high adherence and low intrusiveness. To explore the

power of the triaxial accelerometer and gyroscope in activity
recognition, in this study, we conducted an extensive research.
Considering the limited processing power and battery energy
of a smartphone, we first presented an activity recognition
framework that works in an offline training and online pre-
diction scheme. This enables us to optimize the selection
of features and corresponding model parameters. We then
discussed the sliding window technique and illustrated the
features that can be extracted in the time domain and frequency
domain. With the aim to find a subset of discriminant features,
we further proposed a novel feature selection method that
takes the advantages of filter and wrapper methods. Last,
extensive experiments and analysis were conducted to evaluate
the effectiveness of the proposed feature selector and to
compare the power of accelerometer and gyroscope where
they were used simultaneously or separately. Experimental
results show that the triaxial accelerometer can provide more
discriminant information than the triaxial gyroscope, and that
the fusion of accelerometer and gyroscope data contributes
to obtain better classification performance. In addition, an
effective feature selection method can significantly reduce the
feature dimensionality and further improve the recognition rate
and time performance, and our proposed method FW makes
a better tradeoff between the accuracy and time cost.

For the future work, we plan to conduct further research in
the following lines. First, since feature selection has the capac-
ity to improve the activity recognizer in terms of generalization
ability and time complexity, exploring other effective feature
selectors and comparing them with the proposed one in this
study remains a topic for future research. Second, although we
tested the effectiveness of the proposed approach in recogniz-
ing six physical activity, it is actually a general framework that
can be applied to other situations such as activity recognition
with other sensors, and other classification and regression
problems. So one of the further work involves applying the
proposed approach in related areas. Third, because of the
inter-subject variability, it is often difficult to build a robust
classification model with good generalization ability. Corre-
spondingly, one possible avenue is to explore how to transfer
the knowledge obtained on one subject to other individuals.
Finally, accurate activity recognition helps perceive the state
of an individual and facilitates the design and development of
human-centric applications. Therefore, we intend to develop an
assisted living system in order to understand the user behavior
patterns and promote health in a home setting.
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