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Abstract—Social violence presents a compelling challenge to
public safety, yet existing multimodal detection systems exhibit
excessive reliance on RGB image semantics and opaque decision-
making processes. Despite leveraging visual and auditory data,
current models demonstrate RGB bias in feature prioritiza-
tion, as evidenced by explainability analyzes, thereby limiting
their generalization for behavioral understanding. Additionally,
modality inconsistency and inefficient fusion mechanisms impair
model transparency and training stability. To bridge these
gaps, this study proposes modality-aligned preprocessing (VAJ)
that structurally unifies visual-auditory features through conflict
resolution and input optimization, explicitly suppressing color
dominance while enhancing interpretable feature representations.
Complementing this, we design DTVDS, an interpretable detec-
tion framework integrating knowledge distillation to transfer
distilled behavioral insights from a cumbersome teacher network
to an efficient student model. This dual strategy not only
addresses computational overhead but also clarifies decision
logic through simplified inference pathways. Evaluations on
XD-Violence and UCF-Crime benchmarks demonstrate superior
performance, with AP (89.64%) and AUC (88.35%) outperform-
ing existing methods. Qualitative evaluations further validate
interpretability, revealing modality-coherent attention maps and
human-aligned rationale visualization. The proposed method
advances violence detection by addressing persistent shortcom-
ings in multimodal alignment and model explainability.

Index Terms—Deep learning, interpretable machine learning,
multimodal learning, Violence detection.
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I. INTRODUCTION

SOCIAL violence is a key factor affecting public safety
and stability. Violence detection is crucial for maintaining

public order and reducing violent acts. In the early days,
due to technological limitations, manual inspection of a large
volume of video data was both time-consuming and inefficient.
With the development of AI technology, many studies have
begun to use AI to detect violent behavior in videos. From
the perspective of behavior identification [1], violence detec-
tion is like behavior recognition [2], [3]. Violence detection
technology has a wide range of applications in the real world,
particularly in the fields of personal safety, home security,
and public safety. For example, it can be integrated into
wearable devices, such as smart glasses, smartphones, smart-
watches, or dash cams to help users detect violent behavior
in real time in dangerous environments and automatically
send alerts. In home security monitoring, it can be used to
detect domestic violence; even if the perpetrator attempts to
lower their voice or conceal their actions, the system can
still recognize abnormal behavior. In public places, especially
in privacy-sensitive areas, such as fitting rooms, restrooms,
and counseling rooms, traditional camera surveillance may not
be suitable. However, violence detection systems can analyze
audio to identify violent behavior while protecting individual
privacy. However, the actual situation is much more complex,
as the tone of abuse and threats is also part of violence
detection. Therefore, the current violence detection tends to
use multimodal models that integrate image, audio, and text
to detect violent behavior.

In literature, many studies have proposed the multimodal
framework, aiming to extract a variety of features from
heterogeneous data. However, the multimodal [4], [5], [6],
[7] may still encounter the following three issues. First, the
imbalance in input data across different models may lead
to problems of difficulty in convergence during training and
incorrect prediction results [8], [9]. Fig. 1 gives the flaws that
occurred due to data imbalance. As shown in Fig. 1(a), two
girls are mocking another girl with insulting language, but
the model mistakenly predicts it as nonviolent. This occurs
because the video and audio data are imbalanced. That is, the
video data contains more information than audio, resulting in
the limited effectiveness of the audio modality.

The second issue of the multimodal is that the prediction
results of two modalities may conflict with each other, leading
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TABLE I
GLOSSAR

Fig. 1. Defects in multimodal models for violence detection. (a) Violent scene
with unpleasant sounds incorrectly predicted as non-violence by the model.
(b) Violent scene with pleasant sounds incorrectly predicted as non-violence
by the model.

to errors in the predicted outcomes [10], [11]. As shown
in Fig. 1(b), the two boys are fighting, but with cheerful
music playing in the background, leading the model to also
mistakenly predict it as nonviolent. This occurs because noise
from different modalities can interfere with each other. That is,
the cheerful music acts as the noise for the video, disrupting
the accurate detection of violent behavior.

The third issue with multimodal models is interpretabil-
ity [12], [13], [14], [15], [16], [17]. Although many recent
studies have focused on improving the performance of
models in violence detection tasks, there remains a lack
of understanding and interpretability analysis of the mod-
els’ decision-making processes. In the relevant literature,
researchers have proposed various visualization-based methods
to attempt to uncover the behavior logic of models under
different input conditions. One commonly used technique
is class activation mapping (CAM) [12], which generates
heatmaps to highlight the regions of the input image that the
model focuses on.

Fig. 2 presents visualization results of a deep learning
model [18] designed for violence detection tasks. The figure

Fig. 2. Interpretable analysis by using CAM-based [12].

contains four rows of content: from top to bottom, they are
the original RGB input, interpretability analysis of the RGB
image, grayscale image input, and interpretability analysis of
the grayscale image. As shown in Fig. 2, the heatmaps gen-
erated using CAM technology indicate that when processing
RGB images, the model’s most intense red areas (considered
to be violent parts) are primarily concentrated in regions of
bodily movement, suggesting that the model may be correctly
identifying violent behavior. However, when the same image
is converted to grayscale and re-entered into the model, the
model’s focus shifts significantly. The red areas on the heatmap
are no longer concentrated in the action areas but instead focus
on darker pixel regions, such as black clothing or background.
This phenomenon suggests that the model may rely more
on RGB color information rather than actual motion features
during its prediction process.

This observation reveals limitations in the interpretability
of existing models designed for violence detection tasks: their
decision-making logic does not always align with human
understanding of behavior recognition. Although the model
has undergone 217 h of video training and can achieve
excellent results on specific datasets, its prediction process is
not always based on reasonable behavioral features. This dis-
crepancy may lead to misjudgments in real-world applications,
particularly when dealing with varying lighting conditions or
scenes lacking color information.

This article proposes the design of a unimodal network
architecture that retains the advantages of multimodal systems,
capable of capturing data features from different modalities
while avoiding the three common problems in multimodal
models. Specifically, this article introduces an innovative and
interpretable data preprocessing method called VAJ (Video
and Audio Joint). VAJ integrates high-quality representations
of video and audio into a single image during the data
preprocessing stage, allowing this image to be operated within
a unimodal network architecture.

To realize this concept, this article proposes an innovative
violence detection system called DTVDS. In the preprocessing
stage, DTVDS synthesizes speech signals and images into
a single picture through VAJ, and accurately captures and
identifies temporal dynamics and spatial features in video data

Authorized licensed use limited to: Tamkang Univ.. Downloaded on August 20,2025 at 07:37:34 UTC from IEEE Xplore.  Restrictions apply. 



JIANG et al.: TOWARD INTERPRETABLE MULTIMODAL VIOLENCE DETECTION 6217

through DenseNet and Transformer models. Subsequently,
knowledge distillation techniques are used to effectively
transfer the temporal sequence knowledge acquired by the
Transformer model to the CNN model. In this architecture,
CNN acts as a learner, acquiring deep-temporal knowledge
from the Transformer to achieve fast and accurate violence
recognition with a more streamlined structure. This approach
not only simplifies the model and improves interpretability
but also enhances processing speed and real-time detection
capabilities. The VAJ data preprocessing method and DTVDS
system designed in this article can be deployed in scenarios
involving street violence detection and campus bullying. When
street fights or campus violence incidents occur, the cameras
can quickly and accurately identify violent behavior, enabling
the system to issue alerts as soon as violent events begin. This
allows law enforcement to intervene promptly, minimizing
potential harm to the greatest extent possible.

This article aims to address the following three research
questions.

First, how can multimodal data, specifically speech and
image signals, be effectively integrated into a unified repre-
sentation to improve the accuracy and efficiency of violence
detection systems?

Second, what are the challenges and limitations of cur-
rent convolutional and self-attention-based models in violence
detection, and how can these be addressed through knowledge
distillation techniques?

Third, in what ways can a lightweight yet robust violence
detection system be designed to enhance real-time detection
capabilities while ensuring data privacy and interpretability?

The main contributions of this article are summarized in
three aspects.

1) A novel data preprocessing method VAJ is proposed
to address the issues with RGB images and to inte-
grate essential information extracted from the multiple
modalities. This powerful representation more accurately
conveys scene semantics and action information.

2) Compared to the convolutional models, such as C3D
or ResNet and the self-attention mechanisms com-
monly used in the current field of violence detection,
the proposed DTVDS demonstrates superior semantic
extraction and model generalization capabilities. This
is because, during its application, the model inherits
knowledge from the pretrained model through a knowl-
edge distillation method. Experimental results achieved
an AP value of 89.64% on the XD-Violence dataset
and an AUC of 88.35% on the UCF-Crime dataset,
surpassing existing methods.

3) The proposed VAJ and DTVDS methods are more
lightweight in practical surveillance scenario deploy-
ments, with stronger interpretability, while also offering
advantages in data and privacy protection. The proposed
method is well-suited for real-life applications, such as
campus violence detection and street brawls.

The remainder of this article is organized as follows.
Section II discusses and compares previous relevant studies.
Section III describes the Assumptions and problem formu-
lation in detail. Section IV details the method and model

proposed in this article. Section V provides the experiments
and performance evaluation. Section VI provides lation and
fature work The conclusion is discussed in Section VII.

II. RELATED WORK

In this chapter, a review of some relevant studies in violence
detection is presented. These studies are categorized into three
groups: machine learning, deep learning, and multimodal deep
learning methods. Definitions of symbols and terms are shown
in Table I.

A. Violence Detection in Machine Learning

In literature, many studies adopted machine learning tech-
nologies for violence detection. First, the feature selection
comes from manually designed methods, including histogram
of oriented gradients (HOG), histogram of optical flow (HOF),
scale-invariant feature transform (SIFT), and violent flows
(ViF). These methods can extract features which can be taken
as inputs of machine learning technologies. A variety of
machine learning methods have been developed in the past
years. For example, Bermejo et al. [19] explored the combined
use of SIFT and STIP with the bag-of-words model in combat
detection. Hessner et al. [20] used ViF to represent videos and
then employed a linear SVM to classify videos into violent
and nonviolent categories. Schölkopf et al. [21] employed
an OCSVM to detect violent behavior in videos. The design
of these manual features is based on human understanding
of image characteristics. However, designing and selecting
effective manual features often requires a significant amount of
expertise and trial and error, which is not only time-consuming
but also highly subjective. With the increase in dataset size and
complexity, the performance of manually designed features
often reaches a bottleneck.

B. Violence Detection in Deep Learning

A variety of deep neural networks (DNNs) have been widely
adopted in violence detection tasks due to their outstand-
ing performance. For instance, Sudhakaran and Lanz [22]
utilized Convolutional long short-term memory (LSTM)
networks to identify violent videos, achieving significant
performance improvements compared to methods based on
handcrafted features. Hanson et al. [23] applied Bidirectional
Convolutional LSTM for violence detection. Peixoto et al. [24]
designed two DNNs to learn spatial information from
videos as a means to understand the definition of violence.
Singh et al. [25] proposed a method combining sparse
networks with deep learning networks for detecting violent
behaviors in drone surveillance videos. Saltani et al. [26]
contributed a public data set called UCF-Crime and imple-
mented it using MIL. While these deep-learning models
surpass the performance of traditional machine learning mod-
els, their effectiveness is often limited to single modalities.
However, in real life, the occurrence of violent behavior
often involves multiple modalities, including images, voice,
text, and more. Similarly, compared to machine learning
methods, the interpretability of deep learning models has been
questioned.
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TABLE II
COMPARISON WITH OTHER WORK

C. Violence Detection in Multimodal

With the advancement of deep learning technology, numer-
ous deep multimodal and cross-modal learning tasks and
methods have been developed. For example, Tian et al. [27]
and [28] combined images and sound for audio–visual event
localization and audio–visual film analysis. Wu et al. [18]
employed a multimodal that combines images, sound, and
skeletal data for audio–visual action recognition. They also
contributed the largest public dataset in the field of vio-
lence detection, called XD-Violence [8] which integrated
images, videos, and sound for detecting violent actions.
Wu et al. [4] considered the relationship between video and
audio information to enhance the performance of multimodal
fusion. Yang et al. [29] applied contrastive learning to combine
images and sound for violence detection. These multimodal
models combine various data sources to enhance the detection
efficiency of abnormal behaviors. However, the differences
between modalities may interfere with each other during
model training, potentially affecting model performance due
to noise from different modalities. Shi et al. [6] applied
using contrastive learning with a MIL loss based on abnormal
ratios for anomaly detection. Moreover, compared to unimodal
approaches, it is more complex and thus presents more
challenges in interpretability. Tian et al.’s study demonstrated
that robust temporal feature magnitude learning (RTFM) [28]
enhanced weakly supervised video anomaly detection by
improving temporal feature magnitude learning, particularly
excelling in identifying rare and subtle anomalies. Li et al.’s
evidence showed that Self-Training multisequence learning
(MSL) [30] refined anomaly scores using MSL and self-
training strategies, thereby reducing the likelihood of selection
errors. Chen et al.’s research indicated that magnitude-
contrastive glance-and-focus network (MGFN) [31] introduced
a glance-and-focus network, integrating feature magnification
mechanisms and magnitude-contrastive loss to effectively
address scene variations. Zhou et al.’s study revealed that Dual
Memory Units with Uncertainty Regulation (UR-DMU) [32]
employed dual memory units and uncertainty regulation to
learn representations of normal and anomalous data, enabling
more accurate anomaly differentiation. Joo et al.’s evidence

suggested that CLIP-assisted temporal self-attention (CLIP-
TSA) [33] leveraged CLIP’s ViT features and temporal
self-attention mechanisms, outperforming existing methods on
benchmark datasets. Yang et al.’s research demonstrated that
text prompt with normality guidance (TPWNG) [34] generated
precise pseudo-labels using text prompts and normality guid-
ance, improving the performance of weakly supervised video
anomaly detection.

Table II summarizes the aforementioned methods and com-
pares them with the proposed model in terms of Input
type, Dualmodal, interpretability, privacy protection and Faster
computation.

III. ASSUMPTIONS AND PROBLEM FORMULATION

This section introduces the assumptions and problem state-
ment of this study. Given a video V with a duration of t, this
article aims to identify whether or not there is violent behavior
in V . In recent years, many stuies [19], [20], [21], [22], [28]
have conducted research similar to this article. The label of
violent behavior is represented in the following format.

Let video V = {�1,�2, . . . , �n} be divided into n
equal-length segments, each containing nonviolent, violent
behaviors, or their combination. That is, each segment
�i might comprise both ̂Vi and Vi, where ̂Vi contains
no violent behavior and Vi contains violent behavior, for
0 < i ≤ n. The video V can be represented by V =
{̂V1, V1,̂V2, V2 . . . ..,̂Vn, Vn}.

Let Ti=(tStart
i , tEnd

i )denote the period of Vi, where tStart
i and

tEnd
i denote the starting and end time points of Vi, respectively.

Similarly, let ̂Ti = (̂tStart
i ,̂ tEnd

i ) denote the time period of ̂Vi,
where t̂Start

i and t̂End
i denote the starting and end time points

of ̂Vi, respectively. For each Vi, this article needs to identify
both Vb

i and ̂Vb
i separately.

Consider a violence detection mechanism M which aims to
detect the occurrence of violent behavior. Let RM denote the
detected results of V by applying mechanism M. The RM can
be represented as RM = {̂RM

1 , RM
1 ,̂RM

2 , RM
2 . . . ..,̂RM

n , RM
m }.

Let δi denote whether or not a given video segment ˜Vi

contains violence behavior. That is, δi =
{

1, ˜Vi = Vi

0,˜Vi = ̂Vi

}

.
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Let θ = {θ1, θ2, . . . , θn} be the set of prediction thresholds
consisting of n threshold values. Let δM

i (θj) denote whether
or not the result of video segment ˜Vi predicted by M contains
violence, with Pi denoting prediction score of ˜Vi. That is,

δM
i (θj) = {1, if Pi ≥ θj

0, if Pi < θj
. .

Let TPi, TNi, FPi and FNi represent True Positive, True
Negative, False Positive, and False Negative, respectively, of
the prediction result by applying mechanism M to identify
the individual video segment ˜V . These can be calculated as
follows: TPi is given by TPi = δi × δM

i (θj), TNi is calculated
as (1−δi)×(1−δM

i (θj)), FPi is determined by (1−δi)×δM
i (θj),

and FNi is calculated as δi × (1 − δM
i (θj)).

Let TP, TN, FP, and FN represent the cumulative True
Positive, True Negative, False Positive, and False Negative,
respectively, of the prediction results by applying mechanism
M to all segments ˜Vi ∈ V , for 1 ≤ i ≤ n. The values of these
cumulative metrics can be calculated as follows: TP is the
sum of all individual true positives, calculated as

∑n
i=1 TPi;

TN is the sum of all individual true negatives, calculated as
∑n

i=1 TNi; FP is the sum of all individual false positives,
calculated as

∑n
i=1 FPi; and FN is the sum of all individual

false negatives, calculated as
∑n

i=1 FNi.
Let ℘M and RM denote the Precision and Recall of the

predictions by applying mechanism M to identify a given
video V. The values of ℘M can be calculated as the ratio of
true positives to the sum of true positives and false positives,
given by ℘M = (TP/TP + FP). The value of RM can be
calculated as the ratio of true positives to the sum of true
positives and false negatives, given by RM = (TP/TP + FP).

A. Average Precision (AP)

Let M denote the AP of mechanism M, which can be
calculated by,

M =
n−1
∑

j=1

(

R
(

θj+1
)M − R

(

θj
)M
)

× ℘
(

θj
)M (1)

where R(θj)
M and ℘(θj)

M denote the Recall and Precision
values at θj, respectively.

For a given video V in XD-Violence, the first objective of
this article is to develop a violence detection mechanism M
aiming to maximize M . Let M denote the set of all possible
models M and Mbest denote the best mechanism that achieves
the maximal value of M . Similar to the study [22], [28], The
first objective of this article is to develop mechanism Mbest

that satisfies (2).
First Objective in XD-Violence:

Mbest = arg Max
M∈M

(

ετM

)

. (2)

B. Area Under the Curve (AUC)

Let AM denote the AUC of mechanism M. The value of AM

can be calculated by,

AM =
∫ 1

0
TP
(

θj
)

d
(

FP(θj)
)

(3)

where FP(θj) and TP(θj) denote the FP and TP values at
threshold θj. For a given video V in UCF-Crime, the second
objective of this article is to develop a violence detection
mechanism M aiming to maximize AM . Equation (4) reflects
the objective of UCF-Crime. Let Mbest denote the best mech-
anism that achieves the maximal value of AM . Similar to the
study [22], [28], The second objective of this article is to
develop mechanism Mbest that satisfies (4).

Objective in UCF-Crime:

Mbest = arg Max
M∈M

(AM). (4)

This section introduced the assumptions and problem for-
mulation of this article. The next section will introduce the
method proposed in this article.

IV. PROPOSED VAJ AND DTVDS MECHANISMS

This section introduces the details of the proposed VAJ
and DTVDS mechanisms. The VAJ is a data preprocessing
technique that allows the fusion of image and audio data into a
single image. This process converts Dual-modal data formats
into an unimodal format for processing. Following this format
conversion, the DTVDS model processes the input message
treated by VAJ, learning to extract violent features in the
image, classify whether it is violent, and visualize the violent
features, thereby achieving the interpretability of DTVDS.

4.1 VAJ Processing Phase

The VAJ is a data preprocessing technology that aims to
combine the image and voice signal into a single image. In
related multimodal studies [18], [22], audio and video features
are extracted using different models and then combined at
the backend to form a multimodal network. However, this
approach has the drawbacks of inconsistency between models
and high difficulty in feature fusion. Unlike previous research,
this article proposes the innovative idea of VAJ. The VAJ
guarantees that the fusion of source data from images and
voice signals, which originally served as input data for dual-
modal models, can be integrated into a single image while
retaining all features. The VAJ preprocessing phase also aims
to synchronize the image and voice signal using MFCC to
avoid the imbalance issue that exists in multimodal networks.
The VAJ consists of two tasks: 1) the transformation of the
image data in the original video frame and 2) the integration
of the audio information into the transformed image data.

A. Image Transformation Task of VAJ

Fig. 3 gives an example to illustrate the concepts of the
first task of the VAJ method. The main function of this
task is to extract the key features from the video frame and
further transfer these features to an image. This task includes
four steps: First, the original color image I is converted
into a grayscale image Igray. The purpose of this step is to
reduce computational complexity because a grayscale image
contains only brightness information and no color information,
which is very useful for subsequent feature extraction. In
the second step, a shift operation is first applied to each
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Fig. 3. First task of VAJ: convert the image data in the original video frame.

pixel in the image to create a shifted image. The aim of
shifting is to facilitate subsequent edge detection calculations
by highlighting changes through the comparison of pixel
values before and after the shift. In the same step, the VAJ
further calculates the difference in pixel values after the shift
compared to the original pixel values to obtain the pixel
differences. This step is crucial for feature extraction, as it
highlights edges that change significantly between frames.

To visualize these edge features in the grayscale image, in
the third step, the RGB color space is utilized. The Red color
represents the edges where intensity is calculated to decrease,
blue represents edges where intensity is increasing, and white
represents edges with less noticeable intensity changes. This
visualization helps analyze which edges are visually prominent
and which are secondary. In the fourth step, the image colored
in RGB is then transformed into the HSV space, to adjust the
display brightness based on the magnitude of pixel differences.
In the HSV space, it is more intuitive to adjust the visualization
of edges based on brightness values, making the features stand
out more. Finally, the image in the HSV space is mapped back
to the RGB space to obtain IRGB.This completes the VAJ task,
including the feature extraction and conversion process from
video frames to images.

The following presents the details of the first task of the
VAJ.

Step 1 (Grayscale): Let I denote one video frame. This
stage converts I into a grayscale image Igray, with dimensions
defined by height H and width W.

Step 2 (Grayscale Image Translation Calculation): Let
fshift(.) denote the shift function. This function is applied
to each pixel in an image to detect object edges and
retain these important features. The function fshift(.) can
be implemented by using two parameters, xshift and yshift,
representing the horizontal and vertical translation amounts,
respectively. These parameters are set by predefined values.
After applying the shift function, the final shifted image frame
can be obtained by the operation Igray(i + xshift, j + yshift)

= fshift(Igray(i, j)).
The height and width of the final shifted image can be

calculated by subtracting twice the absolute value of the shifts
from the original dimensions, given as H′ = H − 2 × |xshift|
and W ′ = W − 2 × |yshift|.

Next, the changes of the image frame Igray are calculated to
extract the object edges. Let ϕ denote the differences between

the original and the shifted images. The value ϕ calculated as
ϕ = Igray (i + yshift, j + xshift) - Igray (i, j).

Step 3 (Transformation From Gray Image to RGB Image):
This step aims to develop color mapping rules, evaluate the
differences between before and after mapping, and intuitively
mark these changes on the image. By calculating the dif-
ferences between the displaced and the original images, it
is possible to detect the changes in the edges of a person’s
movements. In the RGB color space, the blue (B) channel
is expected to represent the enhancement of edges, which
can record more apparent motion characteristics, while the
red (R) channel is expected to indicate the weakening of
edges, meaning that the original motion characteristics become
less obvious. The following presents how to carry out these
expectations.

Based on the value of ϕ, a heuristic color mapping rule is
presented, aiming to transform the gray color image to the
RGB image. The transformation rule is presented as shown
in (5).

The positive value of ϕ indicates the object edges is
formed. Since the Blue channel is designed for represent the
enhancement of edges, the condition for storing positive ϕ to

Color Mapping

⎧

⎨

⎩

if ϕ > 10 Blue
if ϕ < −20, Red

if − 20 ≤ ϕ ≤ 10, White
(5)

Blue channel. On the contrary, the Red channel stores the
negative value, representing the weakening of edges. The
threshold values of color mapping are 10 and -20, respectively.

Step 4 (Enhancement of Transformation From RGB Image
to HSV Space): The fourth step of VAJ’s first task aims to
enhance the expressiveness of color mapping by converting
RGB images into HSV space. By adjusting saturation and
brightness based on the differences obtained in the second
step, it intensifies the contrast before and after mapping, and
visually displays these changes in intensity within the image.
After the HSV conversion, the image is converted back to
RGB format to facilitate neural network training.

Following the completion of heuristic color mapping to
reflect the intensity of changes, the saturation and brightness
are further adjusted. The image is converted to the HSV
color space, keeping the hue (H) constant. The adjustment of
saturation (S) and brightness (V) is based on the magnitude of
the pixel difference ϕ, which is calculated using the following
equations: the new saturation Snew is given by S0+αs·(tanh(βs·
ϕ) − S0), and the new brintess Vnew is given by V0 + αv ·
(tanh(βv · ϕ) − V0).

Herein, αs and βs are the parameters that control the
magnitude and rate of adjustment for saturation, respectively.
Similarly, the parameters αv and βv control the magnitude
and rate of adjustment for brightness, respectively. The hyper-
bolic tangent function (tanh) ensures that the adjustments are
contained within a certain saturation and brightness range,
avoiding excessive adjustments. This parametric form allows
for precise control over the changes in saturation and bright-
ness, based on the pixel difference ϕ.

After the adjustment, the transformed IHSV is converted
back into the RGB space IRGB through the mapping function,
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Fig. 4. Second stage of VAJ: convert the Audio data in the original video.

where the red (R) component is calculated as R = Vnew ×(1−
Snew×(1−cos(H))) and the blue (B) component as B = Vnew×
(1 − Snew × (1 + cos(H))). Herein,H, Snew and Vnew represent
the hue, adjusted saturation, and brightness, respectively. This
mapping function illustrates the specific method for converting
the adjusted HSV image back to the RGB color space, where
the calculations for the red (R) and blue (B) components
consider the influence of the hue H along with the adjusted
values of saturation and brightness. This process effectively
transforms the IHSV to IRGB, facilitating further processing and
display of the image in the RGB color system.

Till now, this section presents the entire process of the first
stage of the VAJ method. The second stage of the VAJ will
be introduced next.

B. Voice Transformation Task of VAJ

Fig. 4 showcases the second task of the VAJ method,
which involves extracting audio from the original video and
integrating it with the IRGB obtained from the first task
to produce the updated I′

RGB’ image. As shown in Fig. 4,
this task is divided into two steps. First, for audio–visual
synchronization, the audio is converted into MFCCs and
segmented, then synchronized with IRGB to ensure that the
MFCCs are averaged across each video segment. Following
this, to incorporate the audio features into IRGB, the image
is converted to the HSV space. Based on this, the original
image’s white hues are adjusted to green, and the brightness
and contrast are modified according to the average MFCC
values, before finally converting the processed image back to
the RGB space. The specific process is as follows.

Step 1 (Synchronize Voice and Video): Initially, the audio A
from the original video is segmented

to obtain A = {A1, A2, . . . , An}, where n denotes the
number of segments. Then, each audio segment Ai, where
1 ≤ i ≤ n, is processed with MFCC to yield AMF =
{AMF1, AMF2, . . . , AMFn}. Then the average of each seg-
mented AMFi is calculated over T frames.

The purpose of averaging is to synchronize the audio data
with the video frames IRGB, ensuring that the temporal features
of the audio align with the visual data. This synchronization
helps maintain temporal consistency between the audio and

video in subsequent processing. The formula for calculating
the average is given by AMFj=(1/T)

∑T
i=1 AMF(i,j). Where

T represents the total number of frames within the segmented
time, and AMFj is the average value of the jth MFCC
coefficient over T frames.

Step 2 (Synchronize Voice and Video): Subsequently, the
synchronized IRGB is processed through the HSV color space,
specifically adjusting the original white parts to green, based
on the corresponding AMFj by adjusting the V value. The
calculation of the new V value is as given by: V ′

new =
(([AMFj]/max (AMF))) × 255, where max (AMF) is the
maximum value amongst all elements in the AMF set. The cal-
culated V ′

new value will be used for the brightness component
in the HSV color space. During this process, the hue (H) and
saturation (S) are usually unchanged. The purpose is to allow
audio information to influence the color representation in the
video, so that the brightness changes in the green areas can
reflect the features of the audio, thus enhancing the synergy of
audio–visual effects. For the replacement of green pixels, if a
pixel is detected as green, then it is replaced with the new HSV
value. The purpose of this replacement is to map the variations
in the audio signal to changes in the brightness of the image,
visualizing the intensity changes of the audio signal. Finally,
the adjusted HSV color space I′

HSV is converted back to the
RGB color space I′

RGB. he final converted information in the
green (G) channel is calculated as follows G = V ′

new × (1 −
S × (1 − cos(H − 120

◦
))).

This concludes the detailed operations designed in the VAJ
method. The VAJ method merges image and voice information
into a single image through two stages and integrates the
features of both data sources. Additionally, the transformed
fusion image remains in the RGB image format, making it
suitable for further processing and analysis. In the next section,
the details of DTVDS will be presented.

C. DTVDS

This section will detail the proposed DTVDS system. Fig. 5
shows the specific architecture of DTVDS, which is composed
of three submodels: Module A, Module B, and Module C.
The system includes two phases: 1) training and 2) usage.
In the training phase, RGB images processed by VAJ are
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Fig. 5. Proposed DTVDS system.

first input into Module A for feature extraction, and then
Module B is used to explore and learn from time series data.
This is also known as the offline phase. After the training of
Module B is completed, the knowledge distillation technique
allows the teacher Module B, to guide the training of the
student model, Module C. In the usage phase, after Module A
processes the image with VAJ for feature extraction, Module
C quickly identifies violent scenes with its two convolutional
layers, also known as the online phase. Below is the specific
process.

The input image I ∈ R
224×224×3, has a size of 224 × 224

with three channels for RGB. First, it is input into Module
A, where it passes through the convolutional layer C1, which
uses 64 filters, each with a size of 7 × 7, and a stride of 2. The
convolution operation can be represented as Conv(I, K, S),

where I is the input image, K = 64 is the number of filters,
and S = 2 is the stride. This operation is depicted in FC1 =
Conv(I, 64, 2).

Subsequently, the image passes through four dense layers
D and three transition layers T, each dense layer D consisting
of several dense blocks DLi. Each dense block DLi includes
Li layers and each layer performs the operation sequence
of Batch Normalization (BN), ReLU and then Convolution
operations. Let H denote the output of the current layer,
and H0 denote the output of the previous layer, the output
of each layer in the dense layer can be represented H =
Conv(BN(ReLU(H0)), K), where K is the growth rate, BN
represents batch normalization.

In each transition layer, a convolution operation followed
by a 2×2 average pooling operation is performed. Let F be
the output of the dense layer. The output of the transition layer
F′ can be represented by F′ = Pool(Conv(F, ktrans, 1)), 2),
Where ktrans is the number of convolution filters in the
transition layer.

Let E denote the output obtained by applying global average
pooling after the last dense layer, then the representation of
E can be expressed as E = GlobalAvgPool(H).The global
average pooling compresses the spatial dimension of each
feature map to 1, thus E is a 1-D vector. Its length is
determined by the number of channels in the last dense block,
1024.

The above describes the process by which images are
represented as embeddings through Module A, followed by

these embeddings being learned through Module B, with the
specific process as follows.

First, the embeddings E obtained from Module A are
used as the input for Module B. Let Enorm denote the
Layer Normalization is applied to E, resulting in Enorm =
LayerNorm(E).

Then, Enorm undergoes three different linear projections
to obtain the Query (Q), Key (K), and Value (V) matrices,
expressed as Q = EnormWq, K = EnormWk, and V = EnormWv.
For each attention head, the scaled dot-product attention is
used to calculate the attention scores, which is given by
Attention(Q, K, V) = softmax((QKT/

√
dk))V,where dk is the

dimensionality of the key vectors and is used to scale the dot
product to prevent gradient vanishing problems.

In the multihead attention mechanism, this operation is
executed in parallel multiple times, with each head using
different Wq, Wk, Wv. The output for each head i is given
by Headi = Attention(QWq, KWk, VWv). The outputs of all
attention heads are then concatenated and passed through
linear projection to obtain the final multihead attention output,
denoted as H = concat(Head1, Head2, . . . , Headh)W0, where
W0 is another learnable parameter matrix, H is the number
of attention heads, and the concatenation operation is repre-
sented by concat. Let MHA represent the multihead attention
mechanism, which can be expressed as MHA(Enorm) =
concat(Attention(Enorm(W1

q , . . . .)). After applying the multi-
head attention mechanism, the Dropout operation is performed
to reduce overfitting, resulting in H′ = Dropout(H). The
original input Enorm is added to H′ through a residual con-
nection, followed by layer normalization, leading to Hnorm =
LaynerNorm(H′ + Enorm). Next, it passes through an FFN,
which consists of two linear layers and an activation function
GELU. Let F denote the output through the FFN, which is
expressed as F = Linear(GELU(Linear(Hnorm))).

The output F is then passed through Dropout and added
back to Hnorm as a residual connection, resulting in Fnorm =
LayerNorm(F′). Finally, a linear layer and sigmoid function
are used to achieve binary classification output probabilities.
Let σt denote the output. Which is calculated as σt =
Sigmoid(Linear(Fnorm)).

In Module B, the loss function L1 used for training is the
cross-entropy loss. Given the true labels y and model outputs
σt, the cross-entropy loss can be expressed by

L1 = − 1

N

N
∑

i=1

[

yi log

(

σt
(i) + (1 − yi) log

(

1 − σt
(i)
)

]

(6)

Herein, N is the number of samples, yi is the true label of
the ith sample, and σt

(i) represents the probability predicted by
the model for the ith sample. By minimizing this loss function,
Model B can be optimized within the framework of supervised
learning, improving the performance of classification.

In addition, this article designs fine-grained detection of
violent behavior for Module B. The loss function is set to L2,
as shown in

L2 = − 1

N

N
∑

i=1

M
∑

j=1

yij log

⎛

⎝

exp
(

z(i)
j

)

∑M
k=1 exp

(

z(i)
k

)

⎞

⎠, (7)
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Herein, z(i)
j represents the logits for the jth class of the ith

example, yij is the target probability for the jth class of the ith
example, N is the number of examples, and M is the number
of classes.

After Module B is trained, it is used as the teacher model,
and knowledge distillation is performed on the Module C
student model. In the context of knowledge distillation, the
student model is usually trained using two loss functions: hard
target loss and soft target loss. The following is a detailed step
description.

For coarse-grained and fine-grained, the expressions of the
hard target loss Lhard are shown in (6) and (7), respectively.
The soft target loss is the cross-entropy loss between the
probability distributions of the student model output and the
teacher model output. The temperature parameter T is used
to help the student model learn the behavior of the teacher
model. The soft target loss Lsoft can be expressed by

Lsoft = − 1

N

N
∑

i=1

C
∑

j=1

⎡

⎢

⎢

⎣

softmax

(

σ t
j

T

)

log

⎛

⎜

⎜

⎝

softmax
(

σ s
j

T

)

softmax

(

σ t
j

T

)

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

(8)

where C is the total number of categories, σ t
j and σ s

j are the
logits of the jth class predicted by the teacher and the student
models, respectively. The total loss L is the weighted sum of
the soft target loss and the hard target loss, and the student
model is updated through this total loss. The expression for
total loss is shown in

L = αLsoft + (1 − α)Lhard (9)

where α is a hyperparameter used to balance the contributions
of the two losses. The above is the entire process of the
DTVDS training period. The following describes the inter-
pretable parts of the using stage of DTVDS.

Let the last convolutional layer in Module C consist of K
feature maps, and the size of each feature map is M × N.
That is, we have FεRM×N×K . Connecting to the GAP layer
and outputting a 1 × 1 × K feature vector reduces the number
of parameters in the model. After the GAP layer, a linear
classification layer is connected. Since there are C output
categories, this layer consists of a weight matrix WεRK×C.
For each category c, calculate the weighted sum to obtain
categorical logits, as follows Zc = ∑K

k=1 Wkc.GAP(Fk). Where
Zc represent the logit for category c. Finally, visualization is
generated. For category c, the visualization Mc is calculated as
Mc(x, y) = ∑K

k=1 Wkc.Fk(x, y). Herein, Mc(x, y) denotes the
activation strength of class c at feature map position (x, y).

V. MODEL PERFORMANCE

In this section, relevant experimental performance and
analysis are presented.

A. Dataset

This article employs two datasets: XD-Violence [8] and
UCF-Crime [26]. The XD-Violence is the largest publicly
available dataset in the violence detection domain currently.

Fig. 6. Some examples from XD-Violence [8] and UCF-Crime [26].

It comprises 4754 videos, totaling 217 h, and includes six
types of violent events: verbal abuse, car accidents, explosions,
fights, riots, and shootings. This dataset is randomly divided
into a training set with 3954 videos and a test set with 800
videos. The test set is further categorized into 500 violent
videos and 300 nonviolent videos. The UCF-Crime dataset
consists of 1900 real-world surveillance videos, with 1610 for
training and 290 for testing.

It is noteworthy that the training videos in both the XD-
Violence and UCF-Crime datasets are encoded in MPEG
format and possess only video-level labels. In practice, the
proposed VAJ method is employed to process these MPEG-
encoded videos. Specifically, the VAJ method first decodes
the MPEG video stream to extract individual frames and syn-
chronized audio signals. Subsequently, it integrates the visual
and auditory information into a single image representation, a
process that is critical to the violence detection system. Fig. 6
presents some examples from these two datasets, illustrating
the transformation effects achieved by the proposed VAJ
method.

B. Experimental Setup

This article describes the implementation of the proposed
VAJ and DTVDS system.

In the VAJ processing framework, the parameter settings
for the image preprocessing stage in (5) are as follows: when
converting a grayscale image to an RGB mapping, the positive
threshold is set to 10, and the negative threshold is set to -20.
For image translation operations, both horizontal and vertical
shifts are set to 1 pixel. In the HSV color space, saturation and
brightness adjustments are performed using the tanh function,
with the adjustment parameters α, β, γ , and δ all set to 1.

In DTVDS, In Module A, the first convolutional layer
employs 64 filters of size 7 × 7 with a stride of 2. After
global average pooling, a 1024-dimensional feature vector is
obtained. During training, the Adam optimizer is used with
an initial learning rate of 0.001, a batch size of 128, and a
dropout rate of 0.6. Regarding the loss function, the balance
hyperparameter for coarse-grained detection is set to λ = 0.7,
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while other weights in the fine-grained detection loss remain
fixed at 1.

In the knowledge distillation module, the temperature
parameter T in (8) is set to 2.5, while the hyperparameter α in
(9), which balances soft and hard target losses, is set to 0.2.
Additionally, in the multihead self-attention mechanism, this
study employs 8 attention heads, with the Key dimension for
each head set to 64.

C. Experimental Result

Fig. 7 compares the proposed DTVDS system’s
performance with other models on the XD-Violence and UCF-
Crime datasets, using VAJ and RGB inputs. The blue line
shows XD-Violence results (AP% metric), while the orange
line shows UCF-Crime results (AUC% metric).

The blue section highlights that VAJ integrates multimodal
data into one image, enabling the model to learn more
and outperform RGB-only input. DTVDS excels due to its
effective feature extraction and spatiotemporal processing.
Also, DTVDS (Online), via knowledge distillation from the
Offline version, updates in real-time and surpasses the Offline
model.

The orange section shows one-stage processing of VAJ and
RGB inputs. Lacking audio in UCF-Crime, VAJ is limited
to one-stage use. VAJ outperforms RGB by capturing subtle
motion changes through image shift differences, reducing
color and environmental noise compared to RGB. DTVDS
outperforms others, thanks to Module B’s time-series analysis
in the Offline version enhancing behavior recognition, and
Module C’s distillation in the Online version boosting detec-
tion speed and performance.

Table III compares the proposed DTVDS with other
multimodal models on the XD-Violence dataset. The horizon-
tal axis lists models, and the vertical axis shows AP value
sizes. It compares VAJ input, proposed here, with RGB and
Audio inputs. VAJ enhances preprocessing, addressing data
imbalance and modal noise issues in traditional multimodal
models. Whether using RGB+Audio or VAJ alone, DTVDS
Online and Offline outperform others, thanks to a design
incorporating temporal sequencing and knowledge distillation,
boosting behavior recognition capabilities.

Fig. 8 compares the proposed VAJ method with RGB +
Video multimodal inputs for violence detection on the XD-
Violence dataset. In Fig. 8, the x-axis lists violence types (0–5:
Fighting, Shooting, Riot, Abuse, Car Accident, Explosion), the
y-axis shows AP values, and the z-axis represents model types.
The VAJ method outperforms others, especially in detecting
Category 4 (Car Accident) and Category 3 (Abuse), due to its
ability to handle multimodal data imbalance and inconsistency,
improving accuracy where traditional models struggle. The
DTVDS model also excels, leveraging Module A’s feature
extraction and Module B’s time-series learning to track violent
behavior accurately. Through knowledge distillation, Module
C learns from Module B, enhancing speed and accuracy over
HD-Net, C3D+Self Attention, MCL, and AR-MIL models.

Table IV presents ablation experiments on DTVDS, com-
prising three submodules: Module A (feature extraction),

Fig. 7. Performance of the DTVDS system is compared with other models
on the XD-Violence dataset (blue line) and UCF-Crime (orange line) using
two different input methods: VAJ and RGB images.

TABLE III
COMPARISON OF DTVDS AND MULTIMODAL MODELS USING VAJ

PROCESSING IN TERMS OF XD-VIOLENC

Module B (time series analysis), and Module C (knowledge
distillation and rapid detection). Module C, focused on speed,
is excluded from ablation. The experiment assesses the syn-
ergy of Module A (CNN, ResNet, DenseNet) and Module B
(LSTM, bi-directional LSTM, Transformer). Table IV shows
both modules are essential; using only one reduces accu-
racy. While bi-directional LSTM alone yields the highest
AP, combining it with Transformer outperforms it, thanks
to Transformer’s self-attention integrating temporal data
effectively. Paired with Module A, Transformer boosts time-
series comprehension, enhancing accuracy. Ablation reveals
DenseNet in Module A excels, leveraging dense layer con-
nections for efficient feature and gradient flow, improving
recognition and AP. Results confirm feature extraction and
time-series analysis are vital for violence detection, with
DenseNet + Transformer yielding the best outcomes.

Fig. 9 presents a comparison of the explainability
performance of DTVDS using two different inputs. From left
to right, it shows the original image, areas perceived as violent
by humans, explainability results with RGB+Audio input,
and the VAJ-converted image along with its explainability
results. As illustrated in Fig. 9, when using RGB+Audio as
input, DTVDS fails to identify violent regions and lacks
areas specifically designated as violent behavior. In contrast,
when using images and audio processed through VAJ, the
model demonstrates excellent explainability, with these areas
clearly marked and incorporating both speech and action
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Fig. 8. Compares the performance of the proposed VAJ method with RGB
+ Video multimodal input in terms of violence detection.

TABLE IV
ABLATION STUDY FOR DTVDS

information. This indicates that VAJ not only transforms
multimodal data into more practical unimodal data but also
significantly enhances the model’s explainability.

Fig. 10 compares the DTVDS model’s performance in two
real-time input scenarios. The upper part shows a video
processed via VAJ, integrating video and audio, while the
lower part uses RGB images and audio. The x-axis represents
time, and the y-axis indicates predicted violence levels. The
figure sequentially displays scenes of a skating rink brawl, a
sinking ship, and two men fighting.

As shown in Fig. 10, using traditional RGB and audio
inputs, the DTVDS model misclassifies a normal match as
violent and fails to detect actual violence when a player is
knocked down. In the sinking ship scene, the model does
not recognize violent events, such as explosions, until the
fire subsides. In the fighting scenario, it incorrectly labels the
scene as nonviolent after one person is knocked down but later
misidentifies a helping gesture as violence.

Fig. 9. Interpretable analysis in RGB and VAJ.

Fig. 10. Real-time detection performance comparison of DTVDS with
two different inputs is as follows: Subfigures (a), (b), and (c) display the
performance when VAJ is used as the input data, showing that all violent
scenes are detected. Subfigures (d), (e), and (f) show the performance using
RGB images and audio as inputs. In subfigure (d), a scene from a baseball
game, two people standing close to each other are mistakenly identified as
engaging in violent behavior. In subfigure (e), a scene of a ship being hit by
artillery, the explosion is misinterpreted as violence. In subfigure (f), during
a fight scene, a person falling is mistakenly judged as violence.

These errors stem from imbalanced and ambiguous dual-
modal data—chaotic audio affects the first and third cases,
while the absence of audio in the second forces the model to
rely solely on visuals, missing fire intensity. VAJ preprocessing
resolves these issues by synchronizing video and audio inputs,
improving detection accuracy. Even without audio, the model
identifies violence based on image edge changes, significantly
enhancing its performance.

Fig. 11 aims to compare the computational complexity
of the proposed DTVDS with other methods. The x-axis
represents the sequence length, and the y-axis represents the
complexity. As shown in Fig. 11, the proposed DTVDS online
model does not increase in computational complexity as the
sequence length increases, unlike other models. Moreover, the
DTVDS offline model exhibits lower complexity compared to
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Fig. 11. Complexity statistics.

TABLE V
CORSE GRAINED COMPARISON ON XD-VIOLENC

other models, demonstrating the feasibility of deploying the
proposed DTVDS in real-world edge scenarios.

Table V presents a performance comparison of different
multimodal methods on the XD-Violence dataset, with results
clearly indicating that the Audio+Video fusion approach
outperforms the Text+Video combination. Specifically, the
DTVDS series methods show outstanding performance, par-
ticularly its online version which achieves the highest AP
value of 89.64% in the VAJ configuration, nearly 6% points
higher than the best Text+Video method, TPWNG (83.68%).
Additionally, the online version of DTVDS consistently out-
performs its offline version across various configurations,
which may be attributed to online processing’s superior
ability to capture temporal features. These findings strongly
confirm that in violence detection tasks, the integration of
audio features (such as screams, explosions, etc.) with video
information provides more direct and relevant identification
cues, thus the combination of image and audio indeed holds
a significant advantage over the integration of image and text.

Meanwhile, the Appendix chapter also discusses the compu-
tational complexity of the designed methods, their deployment
on AIoT, and a simple demonstration.

VI. LIMITATION AND FEATURE WORK

Although the proposed VAJ and DTVDS methods have
demonstrated strong performance, they still have certain lim-
itations. The reliance on RGB color information may reduce
robustness under varying lighting conditions or complex envi-
ronments. The imbalance in multimodal data could affect

the weight distribution between audio and video fusion,
thereby impacting model performance. Moreover, the current
interpretability analysis methods remain limited and fail to
fully reveal the model’s decision-making process. Future
research should explore more robust data fusion strategies to
enhance modal consistency, introduce advanced interpretabil-
ity techniques to improve decision transparency, expand the
application of this method to areas, such as traffic safety
monitoring and medical behavior analysis.

VII. CONCLUSION

This article discovers that RGB images have a negative
impact on the detection of violent behaviors, a finding that
is supported both theoretically and empirically. This article
presents an innovative data preprocessing method named
VAJ, along with its accompanying interpretability system,
DTVDS. The proposed VAJ first uses edge detection tech-
niques to analyze image information in videos, retaining
critical information. The diminishing and enhancing of edges
are represented through red and blue color intensities, respec-
tively, which also exploit the key features of violent behavior.
Additionally, in processing audio from videos, VAJ uses
MFCC preprocessing to obtain voice data synchronized with
the video on a per-second basis and employs an averaging
method to ensure that each video frame is synchronized
with the corresponding audio. The frequency variations in the
MFCC of the voice are indicated with green color intensity
in VAJ. The VAJ integration method simplifies multimodal
data into an unimodal format while preserving key information
from the original images. It not only reduces the complexity
of multimodal training and conflicts arising from different
modal data types but also significantly enhances the model’s
interpretability. Moreover, the proposed DTVDS system com-
bines the feature extraction capabilities of DenseNet with
the temporal analysis prowess of Transformers, simplifying
the model through distillation learning to facilitate real-time
computation and further enhance interpretability. Experimental
results show that these methods not only effectively address
the interpretability issues of Dual-modal models but also
significantly improve upon previous research.
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