
Vol.:(0123456789)

The Journal of Supercomputing (2024) 80:363–394
https://doi.org/10.1007/s11227-023-05472-0

1 3

JCF: joint coarse‑ and fine‑grained similarity comparison
for plagiarism detection based on NLP

Chih‑Yung Chang1 · Syu‑Jhih Jhang1 · Shih‑Jung Wu1 · Diptendu Sinha Roy2

Accepted: 1 June 2023 / Published online: 24 June 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2023

Abstract
Document similarity recognition is one of the most important problems in natu-
ral language processing. This paper proposes a plagiarism comparison mechanism
called JCF. Initially, the TF–IDF scheme is applied to build a bag of words as the
representation of the common features of all documents. Then, the plagiarism com-
parison is carried out in a coarse-grained manner, which speeds up the similarity
comparison. Finally, the most similar documents can then be compared in detail
based on a fine-grained approach. In addition, the JCF detects plagiarism at both
syntax level and semantic-like level. To prevent the distortion of similarity com-
parison, this paper further develops a similarity restoration approach such that the
proposed JCF can obtain both advantages of quickness and accuracy. Performance
studies confirm that the proposed JCF outperforms existing studies in terms of pre-
cision, recall and F1 score.

Keywords Natural language processing · TF–IDF · Word2Vec · Coarse and fine
grained · Document similarity

 * Chih-Yung Chang
 cychang@mail.tku.edu.tw

 Syu-Jhih Jhang
 810440064@gms.tku.edu.tw

 Shih-Jung Wu
 wushihjung@mail.tku.edu.tw

 Diptendu Sinha Roy
 diptendu.sr@nitm.ac.in

1 Tamkang University, New Taipei City, Taiwan
2 National Institute of Technology, Shillong, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05472-0&domain=pdf

364 C.-Y. Chang et al.

1 3

1 Introduction

Plagiarism comparison of papers is an important research topic in the field of natu-
ral language processing. Although the existing text similarity comparison system
can provide users with the plagiarism comparison of sentences and paragraphs, the
existing text similarity comparison methods need to go through many time-consum-
ing processes, which compare the word similarity in a one-by-one manner between
the target document and all the documents in the database. As a result, it takes a lot
of time to wait for the comparison results.

In the literature, some studies have proposed similarity comparison mechanisms
based on Word2Vec, N-gram or Bert. However, it is time-consuming because that
one document often contains a large number of words and is required to be com-
pared the similarity with each of a large number of documents in a manner of one-
to-one comparison. In most text comparison methods, to obtain the features of the
document, all documents in the document database will be segmented and sen-
tenced, and then, the keywords of all documents will be obtained through TF–IDF
[1, 2]. After that, the Word2Vec model was applied to convert the text into vectors,
which were readable input formats by a computer. The Word2Vec was a method pro-
posed by Mikolov et al. [3–7]. It mainly transferred the texts to vectors. Two mecha-
nisms were generally applied to achieve the function of Word2Vec. The first one was
a continuous bag of words (CBOW) [8, 9], which used adjacent words as the input
of the neural network to predict the target word. The second one was skip-gram [10,
11], which used the target word as the input of the neural network to predict what
the adjacent words are. Finally, to confirm whether or not the two words belonging
to different documents were similar, the cosine similarity [12, 13] was applied.

Generally speaking, the above method mainly mapped the words in the text to
the vector space. Then, the distance between the two vectors was calculated. In past
research [14, 15], the similarity between two documents was compared through the
above procedure to find out their similarities. However, a document usually con-
tains a large number of words. Let the source of the comparison be a document,
and the goal of the comparison be to compare thousands of documents in the data-
base. It was time-consuming to compare the similarity of one target document and
all documents in the database since the existing mechanisms only can compare the
similarity of two documents at one time. As a result, plagiarism comparison is very
time-consuming.

This study proposes a plagiarism comparison mechanism, called JCF, aiming
to save time for similarity comparison between one target document and all docu-
ments in the database. The proposed JCF first takes out the important keywords
of each document in the way of bag of words [16, 17]. These keywords will be
considered as the document vector. Based on the document vectors, similar doc-
uments can be quickly identified, saving time for comparing a large number of
documents. After that, the proposed mechanism further compares the sentences
containing those similar keywords in similar documents. If the sentences are also
similar, the proposed mechanism further compares the paragraphs containing
similar sentences. Finally, the proposed JCF will compare the documents with

365

1 3

JCF: joint coarse‑ and fine‑grained similarity comparison…

particularly similar paragraphs word by word. Different from the previous stud-
ies, this study uses a coarse-to-fine way to compare the similarity of documents,
which can save a lot of comparison time.

In addition, since the similarities of word vectors, sentence vectors and para-
graph vectors were used for comparison, it is almost able to check the plagiarism
at the semantic level. Therefore, this study does not stick to the word-to-word
ratio for its repetition, which was more flexible in terms of semantics. The main
contributions of this study are itemized as follows:

1. Speed up the similarity comparison Most related studies compared the similar-
ity of the word vectors of the two documents. However, when the compared
targets are a set of documents, similar comparisons are time-consuming. The
proposed JCF speeds up the similarity comparison since it applies the Bag of
Words scheme to initially establish a set of common features of all documents
and then transforms each document as a document vector. Then, the most similar
document can be found as the candidate document. As a result, the target docu-
ment only needs to be compared with the candidate document. Therefore, the
proposed JCF has better performance in terms of comparison time.

2. Coarse-grained and fine-grained design The proposed JCF first identifies the
most similar document from a set of candidate documents in a manner of coarse
grain, which only compares the document vector. Then, the candidate document is
compared with the target document in a manner of coarse grain, which compares
the similarity in keyword level, sentence vector level and then paragraph vector.
Finally, the fine-grained policy is applied to find similar words by comparing the
word vectors of the two documents.

3. Semantic-level similarity comparison Most related studies compared the two
documents using word vectors. The comparison of word vectors can reflect the
semantic similarity in case the similarity of two vectors is higher than the prede-
fined threshold. However, instead of comparing all sentences or all paragraphs,
the proposed JCF only compares the vectors of those sentences and paragraphs
which contain similar words. This can speed up the comparison of the two docu-
ments and further extract the semantic similarity at the sentence level and para-
graph level.

4. Similarity restoration It is not possible to compare the similarity of two docu-
ments in a way of word by word since it is time-consuming. To speed up the
similarity comparison, the comparison can be performed after extracting the
features of the two documents. For example, TF–IDF, bag of words, sentence
vector, paragraph vector or document vector is well-known feature extraction
functions that have been generally applied to a document. However, when apply-
ing the feature extraction functions, the similarity comparison of two documents
might occur distortion, which might impact the accuracy of plagiarism detection.
The proposed JCF further develops a similarity restoration mechanism such that
the similarity comparison can reduce much of the time and prevent plagiarism
detection from distortion.

366 C.-Y. Chang et al.

1 3

2 Related work

The core purpose of this study is to design a comparison method to quickly
find similar documents. This section describes the related studies dealing with
the similarity of documents in recent years. Technically, related studies can be
roughly divided into three categories, including technologies based on BERT,
N-gram and Word2Vec.

Rosu et al. [18] proposed a deep learning plagiarism detection method. This
study collected 570,000 sentences as a dataset for training the BERT model. In
this study, the contents of documents A and B were first segmented, and then,
the sentences of the two documents were converted into sentence vectors through
BERT. Then, each sentence of document A was compared with each sentence of
document B according to the sentence vector. The sentence of document A, hav-
ing the highest similarity with the one of document B, can be obtained. Finally,
dividing the sum of sentences with the highest similarity by the number of sen-
tences was the similarity of document Bohra, and Barwar. [14] used BERT as a
model to propose a plagiarism detection system. This study first removed stop
words from the two documents A and B and then divides the two documents into
many sentences. After that, each sentence of the two documents A and B played
the role of input of the sentence transformer to obtain its sentence vector. Then,
the two documents were divided into sentences. The sentences of the document
were compared one by one for similarity. Then, a threshold value was set to filter
the sentences with high similarity. Finally, similar to Rosu et al. [18], the sen-
tences that satisfied the threshold value were summed up and the average was
obtained as the document similarity.

Yalcin et al. [19] proposed a part-of-speech tag (POS) N-gram plagiarism
detection system. This study first segmented the two compared articles. Then, it
removed the stop words and further segmented sentences from the articles. By
tagging the processed words through POS, the part-of-speech structure of the
sentence can be obtained. Then, the similarity of part-of-speech structures of
the two articles was compared. If they were similar, it further compared the sen-
tence part-of-speech structure of the whole article. If the similarity of the sen-
tences was higher than the specified value, the sentence similarity is compared
through Word2Vec, and finally, the comparison results of similar sentences were
displayed. Awale, et al. [20] proposed an approach to detect plagiarism in pro-
gramming assignments by using N-grams and machine learning techniques. The
method involved extracting features from source code using N-grams and then
training a classifier using various machine learning algorithms to identify simi-
larities between source codes. The source code underwent preprocessing, includ-
ing removing comments, whitespace and other irrelevant symbols. The method
extracted N-gram features from the preprocessed source code using the sliding
window technique. The method trained a classifier using several machine learning
algorithms, including random forest, support vector machine and multilayer per-
ceptron, aiming to distinguish between plagiarized and non-plagiarized program-
ming assignments. The classifier was trained on the extracted N-gram features.

367

1 3

JCF: joint coarse‑ and fine‑grained similarity comparison…

The proposed approach computed the similarity score between the feature sets of
the source and suspicious documents using the cosine similarity measure.

Ramadhanti et al. [21] proposed a method for similarity comparison of Indo-
nesian articles based on the Word2Vec model. The research first collected a large
number of Indonesian articles through Wikipedia and then used the collected arti-
cles as a training set as the input data of the Word2Vec model to train word vec-
tors. Then, the similarity was checked based on two parts: the document similarity
comparison and the paragraph similarity comparison. In the document comparison,
all the words in the document were transferred into word vectors using Word2Vec.
Then, the word vectors of all the words in the two articles were compared using the
Cosine similarity method. Similarly, the paragraph similarity comparison aimed to
compare the paragraphs of the two articles. It firstly obtained the word vectors of
all words in the two paragraphs through Word2Vec, and it used the Cosine similar-
ity to calculate the word vectors of the paragraphs. Finally, the similarity of articles
and paragraphs can be obtained. Xia et al. [15] proposed a similarity comparison
method based on the Word2Vec model. In this study, the two law documents were
first segmented, and then, the sentence vectors were obtained through Word2Vec.
After that, the sentences of the two articles were compared one by one for similar-
ity. The similarity comparison method mainly used the Cosine similarity and Word
Movers Distance methods. Finally, the sentences with the highest similarity were
summed and divided by the total number of sentences as the similarity of the docu-
ment. Qurashi et al. [22] proposed a similarity comparison method for railway reg-
ulatory documents based on the Word2Vec model. It collected railway regulatory
documents through Google News and used the collected documents as a training
set. Initially, it segmented the two railway regulations documents. Then, it inputs
the two documents into the Word2Vec model to obtain the sentence vectors of all
sentences. After that, it compared the sentences in the documents one by one. The
similarity comparison method used Cosine similarity and Jaccard similarity for cal-
culation. After obtaining the highest similarity of each sentence, the similarity of all
sentences is summed and divided by the total number of sentences to represent the
document similarity.

The above-mentioned studies are based on BERT, N-gram and Word2Vec. When
comparing the similarity, most of them are a single comparison of sentences, para-
graphs or articles. However, when the similarity comparison aims to compare one
article with a set of tens of thousands of articles, the comparisons will be time-con-
suming. In case there are multiple articles needed to be compared, it takes a long
time and cannot be compared quickly. Table 1 compares the aforementioned seven
documents with our study. The comparison includes examining the target paper
alongside multiple papers, evaluating similarity error restoration, and analyzing the
progression from coarse to fine. In the table, the notation “V” indicates the matching
for the criterion while the notation “-” indicates its absence.

368 C.-Y. Chang et al.

1 3

3 Assumptions and problem formulation

This section introduces the assumptions and the problem statements. This paper pro-
poses the document similarity comparison mechanism which finds the most similar
document from the database for a given new document. Let U =

{
D1,D2,… ,Dq

}

denote the set of q documents. Each document Di = {Pi,1,Pi,2 … ,Pi,|Di|} is com-
posed of several paragraphs Pi,j , where 1 ≤ j ≤ ||Di||. Each paragraph
Pi,j = {si,j,1, si,j,2,… , si,j,|si,j|} is composed of several sentences si,j,k , where
1 ≤ k ≤ ||Pi,j|| . Each sentence si,j,k = {wi,j,k,1,wi,j,k,2,…wi,j,k,q} is composed of several
words in the sentence si,j,k . Given a document Dtarget , this paper aims to develop a
document comparison mechanism, which compares Dtarget and each document Di in
D and finds the most similar document. Let Dtarget =

{
pt,1, pt,2 … , pt,|Dtarget|

}
 be

composed of several paragraphs Pt,̂j , where 1 ≤ ĵ ≤ ||Di|| . Let

pt,̂j = {st,̂j,1, st,̂j,2,… , s
t,̂j,

|||p
t,̂j|||} be composed of several sentences

st,̂j,̂k ∈ pt,̂j, 1 ≤ k̂ ≤ ||Pi,j|| . st,̂j,̂k = {wt,̂j,̂k,1,wt,̂j,̂k,2,…w
t,̂j,̂k,

|||s
t,̂j,̂k|||} be composed of several

words wt,̂j,̂k,q̂ ∈ st,̂j,̂k, 1 ≤ q̂ ≤
|||s

t,̂j,̂k||| . Consider two words wi,j,k,q ∈ Di and

wt,̂j,̂k,q̂ ∈ Dtarget. Let �i,j,k,q
t,̂j,̂k,q̂

 be a Boolean variable that indicates whether or not the

word wi,j,k,q ∈ Di is identical to the word wt,̂j,̂k,q̂ ∈ Dtarget . That is,

If the condition �i,j,k,q
t,̂j,̂k,q̂

= 1 holds, it represents that q-th word in the document Di is
the same as the q̂-th word in the document Dtarget.

(1)�
i,j,k,q

t,̂j,̂k,q̂
=

{
1 wi,j,k,q = wt,̂j,̂k,q̂

0 otherwise

Table 1 Comparison of related studies

Related work One-to-
many com-
parison

Model Similarity
error restora-
tion

From
coarse to
fine

[18] – BERT + Cosine similarity – –
[14] – BERT + Cosine similarity – –
[19] – N-gram + POS + Word2Vec – v
[20] – N-gram + Cosine similarity – –
[21] – Word2Vec + Cosine similarity – v
[15] – Word2Vec + Cosine similarity + WMD – –
[22] – Word2Vec + Cosine similarity + Jaccard

similarity
– –

Our v Word2Vec + Cosine similarity v v

369

1 3

JCF: joint coarse‑ and fine‑grained similarity comparison…

The next step is to compare the k-th sentence si,j,k in document Di and the k̂-th
sentence st,̂j,̂k in Dtarget . Let �i,j,k

t,̂j,̂k
 denote the number of identical words in the two sen-

tences si,j,k and st,̂j,̂k . That is,

If the condition �i,j,k
t,̂j,̂k

≥ ||si,j,k|| , the paragraphs pi,j and pt,̂j that contain si,j,k and st,̂j,̂k ,
respectively, should be further examined. Let �i,j

t,̂j
 denote the number of identical sen-

tences in the two paragraphs pi,j and pt,̂j . That is,

If the condition 𝜆i,j
t,ĵ
≥ ||Pi|| , let �i

t
 denote the number of identical paragraphs in the

two documents Di and Dtarget . That is,

Let Dlike be the subset of D. The document Di ∈ D which satisfies the condition

will be collected in Dlike . That is,

Let A be an algorithm and the set of Dlike found by algorithm A is called Dlike
A

 . Let
�i
A
 denote whether or not the document Di is considered as the element of Dlike by

applying algorithm A. That is,

Let TPi , TNi , FPi and FNi denote the True Positive, True Negative, False Posi-
tive and False Negative of the prediction result of algorithm A for the document Di ,
respectively. We have

(2)𝜆
i,j,k

t,ĵ,k̂
=

|||s
t,ĵ,k̂|||∑

q̂=1

|si,j,k|∑

q=1

𝜆
i,j,k,q

t,ĵ,k̂,q̂

(3)𝜆
i,j

t,ĵ
=

|||p
t,ĵ|||∑

k̂=1

|pi,j|∑

k=1

𝜆
i,j,k

t,ĵ,k̂

(4)𝜆i
t
=

|Dtarget|∑

ĵ=1

|Di|∑

j=1

𝜆
i,j

t,ĵ

(5)�i
t
≥ �

(6)Dlike =
{
Di|�i

t
≥ �

}

(7)�i
A
=

{
1,

0,

Di ∈ Dlike
A

otherwise

370 C.-Y. Chang et al.

1 3

Let TPA , TNA , FPA and FNA denote the True Positive, True Negative, False
Positive and False Negative of the prediction results for all document Di ∈ D , for
1 ≤ i ≤ q , respectively. We have

Let AA , ℘A and RA denote the Accuracy, Precision and Recall of the predictions
for applying algorithm A to all documents Di ∈ D . The values of A , ℘ and R can
be further derived by applying the following Exps. (6), (7) and (8), respectively.

and

As a result, the F1-Score, denoted by FA , is used to adjust the weights of false
positives and false negatives. Exp. (9) gives the calculation of FA.

For a given document Dtarget , let � denote the set of all possible mechanisms
each of which can determine the most similar document Dtarget . This paper aims to
develop the best algorithm A ∈ � which can minimize the number of errors and
maximize the F1-score metric. The objective function of this paper can be expressed
by the Exp. (10).

Objective:

(8)

TPi = �i × �i
A
,

TNi = (1 − �i) × (1 − �i
A
),

FPi =
(
1 − �i

)
× �i

A
, and

FNi = �i × (1 − �i
A
)

(9)

TPi = �i × �i
A
,

TNi = (1 − �i) × (1 − �i
A
),

FPi =
(
1 − �i

)
× �i

A
, and

FNi = �i × (1 − �i
A
)

(10)AA =
TPA + TNA

TPA + TNA + FPA + FNA

(11)℘A =
TPA

TPA + FPA

(12)RA =
TPA

TPA + FNA

(13)FA =
2
(
PrecisionA × RecallA

)

PrecisionA + RecallA

(14)max

(
2
(
PrecisionA × RecallA

)

PrecisionA + RecallA

)

371

1 3

JCF: joint coarse‑ and fine‑grained similarity comparison…

4 The proposed JCF mechanism

Given a documentDtarget , this paper aims to propose a document similarity compari-
son mechanism that can find the most similar target document Dlike from a given
document database. Suppose the database has q documents. Let U denote the union
of q documents. That is,U =

{
D1,D2,… ,Dq

}
 . Let Dq become the target document

Dtarget . Given a target documentDq , this section aims to find the document Dlike
which is the document most similar toDq . Figure 1 shows an example concept flow-
chart of JCF. The proposed JCF speeds up the similarity comparison since it applies
the Bag of Words scheme to initially establish a set of common features of all docu-
ments. Then, it transforms each document into a document vector. As a result, the
most similar document which will play the role of the candidate document can be
found. As a result, the target document only needs to be compared with the candi-
date document.

Till now, the similar words of the two documents have been identified. Then, the
comparison of the two documents in word level has been finished. The next step is
to compare the two documents in sentence level. In the sentence-level comparison,
only the sentences that contain similar words will be compared using the sentence
vector. For two paragraphs in the target and candidate documents, if the number of
similar sentences in the two paragraphs exceeds a predefined threshold, the para-
graph-level comparison will be activated. The comparison of this level aims to com-
pare two paragraphs of the target and candidate documents using paragraph vectors.

Fig. 1 An example concept flowchart of JCF

372 C.-Y. Chang et al.

1 3

4.1 Coarse grain: similar document identification phase

Let ŵ denote all words in q documents. That is,

Firstly, the TF–IDF will be applied to find the top-k important words w in U.
Let w be any word in U. Let TF–IDF(w) be the TF–IDF value of the word w ∈ U.
Let Û be ordered TF–IDF(w). Let TF–IDF(k, Û) denote the set of top k words.
The following gives an example to show the TF–IDF computations. Consider a
document D which consists of 1000 words in total. Assume that ‘AI’ and ‘and’ are
two words that appeared in document D. Firstly, the TF values of ‘AI’ and ‘and’
will be calculated. Assume that “AI” appeared 60 times, while “is” appeared 60
times in D. Let TF(w) denote the TF value of word w in document D. Then.

TF(“AI”) = 40/1000 = 0.04, and
TF(“is”) = 60/1000 = 0.06.

Assume that the number of total documents considered for calculating the
IDF values is 100. Assume that “AI” appears in 10 documents, and “is” appears
in 100 documents. Let IDF(w) denote the IDF value of the word w. Then.

IDF(“AI”) = log(100/10) = 1, and
IDF(“is”) = log(100/100) = 0,

Therefore, we have:

TF–IDF(“AI”) = TF(“AI”)*IDF(“AI”)=0.06
TF–IDF(“is”) = TF(“is”)*IDF(“is”)=0

Therefore, the importance of the word “AI” is more significant than the word “is.”
Let VU denote the set of all TF–IDF values of words ŵU

i
 in U. Let top(VU , k)

denote the top k TF–IDF values in VU . Let ŴU
k

 be the set of words whose TF–IDF

values are on top(VU , k). That is, ŴU
k
=
{
wi
||TF − IDF

(
wi

)
∈ top(VU , k),wi ∈ U} .

These words will be treated as the document features(or DF in short) which will be
used to represent the document vector. For instance, ŴU

10000
 denote the set of 10,000

words whose TF–IDF values rank in the top 10,000.
Similarly, Let VD denote the set of all TF–IDF values of all words w in document

D ∈ U . Let top(VD, p) denote the top p TF–IDF values in VD . Let ŴD
p

 be the set of
words whose TF–IDF values are on top(VD, p). That is,

For instance, let p = 100. WD
100

 denote the most important 100 words in document
D.

Let reorder() reorder all words in a set such that the subscript index of all words
is continuous. Let

(15)U =

q⋃

i=1

Di =
(
ŵU
1
, ŵU

2
… , ŵU

|U|

)

(16)ŴD
p
=
{
wi|TF - IDF|

(
wi

)
∈ top

(
VD, p

)}
.

373

1 3

JCF: joint coarse‑ and fine‑grained similarity comparison…

4.2 Fine grain: word similarity check phase

Till now, the WU
k

 represents the most important top-k words in all documents Di ∈ U
and WDi

p
 represents the top-p most important words in the document Di ∈ U . The

next step aims to create a document vector for each document Di ∈ U . Let Φ(D) be
a k-dimensional vector

that denotes the document vector of D. Each element di in Φ(D) is a pair of (�i,wi),
where �i is a value denoting the similarity of word wi ∈ D similar to the i-th word
in ŴU

k
 . Let wi and wU

i
 be the i-th words of D and ŴU

k
 , respectively. Let vi and vU

i
 be

the word vectors of wi and wU
i

 obtaining from Word2Vec algorithm. The �i can be
calculated by

Let Φ(D).sim and Φ(D).word be the two vectors consisting of all similarity values
�i and all words inΦ(D) , respectively. For example, the document vector Φ(D) is:

Then, we have

Let Φ(D, i).sim and Φ(D, i).word denote the i-th element in Φ(D).sim
andΦ(D).word , respectively. For example, Φ(D, 2).sim is (0.16) and Φ(D, 2).word

=’future’. The ŴU
k

 containing k-word which can be treated as a k-dimensional
word. At the conceptual level, each word w in ŴD

p
 will compare its similarity with

each word in ŴU
k

 and finally obtain k similarity values. The k similarity values
will be considered as the document vector of documentD . The detailed operation
for creating the document vector will be presented below. Let wi,j be the j-th word
inŴD

p
 . Let wU

max
 be the most similar word in ŴU

k
 as comparing all wU

i
∈ ŴU

k
 with

the word wi,j ∈ ŴD
p

 . That is,

(17)
WU

k
= reorder

(
ŴU

k

)
, and

WD
p
= reorder

(
ŴD

p

)

(18)Φ(D) =
(
d1,… , dk

)

(19)�i = Cos
�
vi, v

U
i

�
=

∑n

i=1
viv

U
i

�∑n

i=1
vi
2

�∑n

i=1
vU
i

2

(20)Φ(D) =
([
0.8, �better�

]
,
[
0, �mouse�

]
,
[
0.16, �future�

]
, …

)

(21)
Φ(D).sim = (0.8, 0, 0.16, …) and

Φ(D).word =
(
�better�, �mouse�, �future�, …

)

374 C.-Y. Chang et al.

1 3

Assume that wU
max

 are the x-dimension and y-dimension in ŴU
k

 . Then, the value
of similarity and word Sim(wi,j,w

U
max

) will be stored in the x-th and y-th dimension
values, respectively. That is,

Till now, each document has obtained its document vector and the words
w ∈ WU

k
 . The next step is to adopt the document vector to find the most similar doc-

ument in U (Dq) with the document Dq . Let d(Di,Dj) denote the distance of docu-
ments Di and Dj . The Euclidean distance will be adopted to measure the distance
between the two documents. That is,

Let Dlike be the document that is the most similar with Dq . That is,

As shown in Eq. (25), the document Dlike , which is the most similar to Dq , can be
found according to the Euclidean distance of Φ(Dq) and Φ(Dlike) . The next step is to
find similar words, sentences as well as paragraphs of Dq and Dlike . To achieve this, this
paper proposes a low comparison-cost and quick mechanism, based on the Joint Coarse
and Fine-Grained (JCF) policy. The JCF policy first compares the sentence similarity,
then paragraph similarity and finally document similarity. The document vectors of Dq
and Dlike have depicted their similar words. The first step is to identify similar words in
the two documents and then extract the corresponding sentences for verification.

The following gives an example to illustrate the design concept. Assume that the
document vectors Φ(Dq) and Φ(Dlike) are.

Let Wsim be an empty collection . That is,Wsim = ∅ . Assume that the document is
a vector of length 1000. The document vectors Φ(Dq) and Φ(Dlike) will be compared
one by one to check the similar document features. Let �word be a threshold value
for determining whether or not the two document features are similar. For example,
assume �word. The next step is to verify whether or not the similarity of words Φ(Dq

).word and Φ(Dlike).word is larger than the threshold value�word . The following pre-
sents a word similarity condition for the i-th words of Φ(Dq) and Φ(Dlike).

Word similarity check condition for i-th words(i-WSC)

(22)wU
max

= arg max
wU
i
∈WU

k

Sim(wi,j,w
U
k
)

(23)
Φ(i, x).sim = Sim(wi,j,w

U
max

)

Φ(i, y).word = Sim
(
wi,j,w

U
max

)
)

(24)d(Di,Dj) =

(
k∑

x=1

[
Φ(i, x) − Φ(j, x)

]2
) 1

2

(25)Dlike = arg min
Di∈U−{Dq}

d
(
Di,Dq

)

(26)
Φ(Dq) =

[(
0.85, good�

)
,
(
0.3, teacher�

)
,…

]
and

Φ(Dlike) =
[(
0.9, better�

)
,
(
0.15, }happy�

)
,…

]

375

1 3

JCF: joint coarse‑ and fine‑grained similarity comparison…

Let Boolean variable �word
i

 represent whether or not the i-th words of Φ(Dq) and
Φ(Dlike) satisfy the word similarity condition. That is,

For example, �word
1

 is 1. This occurs because the first words of Φ(Dq) and Φ(Dlike)
satisfy the 1-WSC condition

Since the two words ‘good’ and ‘better’ are similar, the pair of the two words
should be stored in Wsim . Then, we have a pair of similar word

The above-mentioned operations should be performed on the i-th words of Φ(Dq)
and Φ(Dlike) for 1 ≤ i ≤ k . That is, the following word similarity check operations
should be performed:

for i in range(1, k):
if �word

i
= = 1:

 Wsim = Wsim ∪ (Φ (Dq
, i). word,Φ (Dlike

, i). word)

Till now, all similar words (document features) of the two documents Dq and Dlike
have been stored in the set Wsim . The next subsection further checks the similarity of
those sentences which contain the word pair in Wsim.

4.3 Fine grain: sentence similarity check phase

In the last subsection, all similar words (document features) of the two documents
Dq and Dlike have been stored in a set Wsim . This subsection aims to check the simi-
larity of Dq and Dlike in the sentence level. Let (x, y) be one element of Wsim . For
each (x, y)∈ Wsim , the following presents the similarity check at the sentence level.
Let Sqx denote the set of sentences containing the word x in the document Dq . Let Slike

y

denote the set of sentences containing the word y in the document Dlike.
Let Vsentence

S
q
x

 denote the set of sentence vectors of the sentence set Sqx . Let Vsentence

Slike
y

denote the set of sentence vectors of the sentence set Slike
y

.
The similar sentences of Sqx and Slike

y
 will be found based on the calculation of the

sentence vector. Let s = (w1, w2 , w3, …, wr) represent a sentence, which consists of r
words. The following will introduce the implementation of a function s2v(s) which
transfers a sentence s to a sentence vector. Let vi denote the word vector of wi . Let VS
represent the sentence vectors VS = (v1,…, vr) of sentence s = (w1, w2 , w3, …, wr) . Let

(27)min(Φ(Dq, i). sim, Φ(Dlike, i). sim) ≥ �word

(28)�word

i
=

{
1 if (i −WSC) is satisfied

0 other wise

(29)
min(Φ(Dq, i). sim, Φ(Dlike, i).sim)

= min (0.85, 0.9) = 0.85 ≥ 0.8

(30)Wsim =
{(

�good�,� better�
)}

376 C.-Y. Chang et al.

1 3

vs denote the average sentence vector which is obtained by the average vector of VS .
The following presents the pseudo-code of function s2v().

Def s2v(s):

Let s = (w1, w2 , w3, …, wr)

Transfer each word wi ∈ s to vi
Let VS = (v1,…, vr)

vs=
∑r

i=1
vi/r

return(vs)
Initially, assume that Vsentence

S
q
x

 and Vsentence

Slike
y

 both are empty sets . That is,

The next step is to apply function s2v() to transfer s to a sentence vector vs for
each sentence s ∈ S

q
x . That is,

Similarly, the function s2v() is applied to transfer ŝ to a sentence vector vŝ for
each sentence ŝ ∈ Slike

y
. Then the set Vsentence

Slike
y

 is updated accordingly.

Let vq
i
 belongs to Vsentence

S
q
x

 and vlike
j

 belongs to Vsentence

Slike
y

 . Let Vsim
x,y

 denote an empty

set. All possible combinational pairs (vq
i
, vlike

j
) for vq

i
∈ Vsentence

S
q
x

 and vlike
j

∈ Vsentence

Slike
y

will be checked the similarity of vq
i
 and vlike

j
 by applying the cos-similarity

cos
(
v
q

i
, vlike

j

)
.

The following presents the SSC condition which aims to find similar sentences in
documents Dq and Dlike.

Sentence similarity check (SSC) condition

Let (sq
i
 , slike

j
) be the sentence pair of sentence vector pair (vq

i
,vlike
j

) , for all

(v
q

i
,vlike
j

)�Vsim
x,y

 . Let Ssim denote the set of all pairs (sq
i
 , slike

j
). we have

Till now, all similar sentences of the two documents Dq and Dlike have been stored
in a set Ssim . The next subsection further checks the similarity of those paragraphs
which contain the sentence pair in Ssim.

(31)Vsentence

S
q
x

= �, Vsentence

Slike
y

= �

(32)Vsentence

S
q
x

= Vsentence

S
q
x

∪ vs

(33)Vsentence

Slike
y

= Vsentence

Slike
y

∪ vŝ

(34)

Vsim
x,y

=
{
(v

q

i
, vlike

j
)| cos

(
v
q

i
, vlike

j

)
≥ �sentence, for v

q

i
�Vsentence

S
q
x

, vlike
j

�Vsentence

Slike
y

}

(35)Ssim =
{
(s

q

i
, slike

j
) ∀ (v

q

i
, vlike

j
)�Vsim

x,y

}

377

1 3

JCF: joint coarse‑ and fine‑grained similarity comparison…

4.4 Fine grain: paragraph similarity check phase

In the last subsection, all similar sentences of the two documents Dq and Dlike have
been stored in a set Ssim . This subsection aims to check the similarity of Dq and Dlike
in the paragraph level for those similar sentences. Let (sq

i
 , slike

j
) be one element of

Ssim . For each (sq
i
 , slike

j
)∈ Ssim , the following presents the similarity check at the para-

graph level. Let Pq
si
 denote the set of paragraphs containing the sentence sq

i
 . Let Plike

sj

denote the set of paragraphs containing slike
j

 . Let Vparagraph

P
q
si

 denote the set of para-

graph vectors of the paragraph set Sqx . Let Vparagraph

Plike
y

 denote the set of sentence vectors

of the paragraph set Plike
y

.
The similar check of paragraphs Pq

x and Plike
y

 will be found based on the calcula-
tion of the sentence vector. The similar check of paragraph sets Pq

si
 and Plike

sj
 will be

done based on the calculation of the paragraph vector. Let p = (s1, s2, s3, …, sr) repre-
sent paragraph, which consists of r sentences. Let p2v(p) be a function that converts
a paragraph s to a paragraph average vector.

The following will introduce the implementation of a function p2v(p) which
transfers a paragraph p to a paragraph vector. Let vi denote the sentences vector of
si . Let Vp represent the paragraphs’ vectors Vp = (v1,…, vr) of paragraph p = (s1, s2,
s3, …, sr) . Let vp denote the average paragraph vector which is obtained by the aver-
age vector of Vp . The following presents the pseudo-code of function p2v().

Def p2v(p):

 p =
(
s1, s2, s3,… , sr

)

 Transfer each sentence si ∈ p to vi
 Let Vp = (v1,…, vr)

vp=
∑r

i=1
vi/r

 return(vp)

Initially, assume that Vparagraph

P
q

i

 and Vparagraph

Plike
j

 both are empty sets . That is,

V
paragraph

P
q

i

 = ∅ , Vparagraph

Plike
j

=∅

The next step is to apply function p2v() to transfer p to a paragraph vector vp for
each paragraph p ∈ P

q
si
 . That is,

for each p in Pq
si
:

vp=p2v(p)

Vp =
(
v1 = s2v(s1

)
,… , vr = s2v(sr))

V
paragraph

P
q
si

= V
paragraph

P
q
si

∪ vp

378 C.-Y. Chang et al.

1 3

Similarly, the function p2v() is applied to transfer p̂ to a paragraph vector vp̂ for
each sentence p̂ ∈ Plike

sj
. Then, the set Vparagraph

Plike
sj

 is updated accordingly

for each p̂ in Plike
sj

:

vp̂=p2v(p̂)

Let vqa belong to Vparagraph

P
q
si

 and vlike
b

 belong to Vparagraph

Plike
sj

 . Let Vsim
a,b

 denote an empty

set. All possible combinational pairs (vqa, vlikeb
) for vqa ∈ V

paragraph

P
q
si

 and vlike
z

∈ V
paragraph

Plike
sj

will be checked for the similarity of vqa and vlike
b

 by applying the cos-similarity
cos

(
v
q
a, v

like
b

)
.

The following presents the PSC condition which aims to find a similar paragraph
of documents Dq and Dlike.

Let Psim={(pqa , plikeb
),…}, where (pqa , plikeb

) is a paragraph pair of vector pair (pqa ,
plike
b

).
Paragraph similarity check (PSC) condition

Let (pqa , plikeb
) be the paragraph pair of paragraph vector pair (vqa, vlikeb

) , for all

(v
q
a, v

like
b

)ϵVsim
a,b

 . Let Psim denote the set of all pairs (pqt , plikez
). we have

Till now, all similar paragraphs of the two documents Dq and Dlike have been
stored in a set Psim . The next subsection further checks the similarity of those docu-
ments which contain the paragraph pair in Psim.

4.5 Fine grain: document similarity check phase

After finding the most similar paragraph, the next step is the word-to-word comparison
of the entire document. To present the comparison method, some notations are defined.
Let �paragraph

q,i
 denote the number of paragraphs in the document Dq . Let �sentence

q,i,j
 denote

the number of sentences in the paragraph pq,i of document Dq . Let word �word
q,i,j,k

 denote the

number of words in the sentence sq,i,j of paragraph pq,i of document Dq.
The next step is to calculate the document average vector in each stage (para-

graph, sentence and word). Let V
q

Sq,i,j
 denote the average sentence vector of the sen-

tence sq,i,j in paragraph pq,i of Dq . The value of V
q

sq,i,j
 can be derived by

V
paragraph

Plike
sj

= V
paragraph

Plike
sj

∪ vp̂

(36)

Vsim
t,z

=
{(

vq
a
, vlike

b

)|||cos
(
vq
a
, vlike

b

)
≥ �paragraph, for each v

q
a
�V

paragraph

P
q
si

, vlike
b

�V
paragraph

Plike
sj

}

(37)Psim =
{
(pq

a
, plike

b
), ∀ (vq

a
, vlike

b
)�Vsim

a,b

}

379

1 3

JCF: joint coarse‑ and fine‑grained similarity comparison…

Similarly, let V
q

pq,i
 denote the average paragraph vector, which can be derived by

sentence vectors as follows.

Let V
q

D
 denote the average document vector of Dq , which is derived from the par-

agraph vectors of Dq . That is,

After calculating the average vectors of all paragraphs and sentences, put these
obtained vectors into the paragraph vector set and sentence vector set, respectively.
Let Vq

D
 be the set of paragraph vectors. That is,

Let Vq
pi
 be the set of sentences vectors in paragraph pq,i . That is,

Let Vq
si,j

 be the set of words vectors in the sentence sq,i,j in paragraph pq,i,

Similarly, the next step is to calculate the vector of the document Dlike . Let
�
paragraph

like
 denote the number of paragraphs in the document Dlike . Let �sentence

like,m
 denote

the number of sentences in the paragraph plike,m of document Dlike . Let word �word
like,m,n

denote the number of words in the sentence slike,m,n of paragraph plike,m of document
Dlike.

The next step is to calculate the document average vector in each stage (para-
graph, sentence and word). Let V

like

slike,m,n
 denote the average sentence vector of the sen-

tence slike,m,n in paragraph plike,m of Dlike . The value of V
like

slike,m,n
 can be derived by

(38)V
q

sq,i,j
=

∑
wq,i,j,k∈sq,i,j

Vwq,i,j,k

�word
q,i,j

(39)V
q

pq,i
=

∑
sq,i,j∈pq,i

Vsq,i,j

�sentence
q,i

(40)V
q

D
=

∑
pq,i∈D

q Vpq,i

�
paragraph
q

(41)V
q

D
= {V

q

pq,1
,V

q

pq,2
,… ,V

q

p
�
paragraph
q

}

(42)Vq
pi
= {V

q

sq,i,1
,V

q

sq,i,2
,… ,V

q

s
q,i,�sentence

q,i

}

(43)Vq
si,j

= {V
q

Wq,i,j,1
,V

q

Wq,i,j,2
,… ,V

q

W
q,i,j,�word

q,i,j

}

(44)V
like

slike,m,n
=

∑
wlike,m,n,o∈sm,n

Vwlike,m,n,o

�word
like,m,n

380 C.-Y. Chang et al.

1 3

Similarly, let V
like

plike,m
 denote the average paragraph vector, which can be derived by

sentence vectors as follows.

Let V
like

D
 denote the average document vector of Dlike , which is derived from the

paragraph vectors of Dlike . That is,

Let V like
D

 be the set of paragraph vectors. That is,

Let V like
pm

 be the set of sentences vectors in paragraph plike,m . That is,

Let V like
sm,n

 be the set of words vectors in the sentence slike,m,n in paragraph plike,m,

(45)V
like

plike,m
=

∑
slike,m,n∈plike,m

Vslike,m,n

�sentence
like,m

(46)V
like

D
=

∑
plike,m∈D

like Vplike,m

�
paragraph

like

(47)V like
D

= {V
like

plike,1
,V

like

plike,2
,… ,V

like

p
like,�

paragraph

like

}

(48)V like
pm

= {V
like

slike,m,1
,V

like

slike,m,2
,… ,V

like

s
like,m,�sentence

like,m

}

Fig. 2 Word_Output algorithm

381

1 3

JCF: joint coarse‑ and fine‑grained similarity comparison…

The next step aims to find the most similar words between the two documents Dq
and Dlike . Figure 2. gives the Word_Output algorithm which aims to find all similar
words in the two documents. First, similar paragraphs should be found. It can be
achieved by comparing the paragraph vector Vq

pi
∈ V

q

D
 and paragraph vector

V like
pm

∈ V like
D

. In case, the similarity of Vq
pi
 and V like

pm
 exceeds the predefined threshold

value �paragraph , the sentences in the two corresponding paragraphs should be further
checked. Steps 1 and 2 examine the similarity of paragraphs pm and pi . If it is the
case, the next step is to find similar sentences in pm and pi . Steps 3 and 4 further
compare the similarity of sentence vectors Vq

Si,j
∈ V

q
pi
 and V like

Sm,n
∈ V like

pm
 . In case the

similarity of Vq

Si,j
 and Vq

Si,j
 exceeds the predefined threshold value Vq

Si,j
 , the words in the

two sentences should be further compared. Steps 5 and 6 aim to check the similarity
in word level for documents Dq and Dlike.

In case the word vectors Vq

W
 and V like

W
 is larger than the threshold value �word ,

the corresponding words wq,i,j,k and wlike,m,n,o will be outputted. The proposed JCF
adopts coarse-grained and then fine-grained comparison. It aims to speed up the
similarity comparison. Therefore, the JCF applies the Bag of Words scheme to ini-
tially establish a set of common features of all documents and then transforms each
document into a document vector. Then, the most similar documents can be found as
the candidate document.

After that, the fine-grained comparison is applied to the candidate documents
which are found in the previous step. the candidate document is compared with the
target document in a manner of fine grain, which compares the similarity in sen-
tence level and then paragraph level. In the comparison of sentence level, the pro-
posed JCF only compares those sentences which contain similar words found in the
coarse-grained comparison. After that, in the comparison of paragraph level, the
JCF only compares the paragraphs which contain a certain number of similar sen-
tences. The selective comparison not only speeds up the process but also facilitates
the extraction of semantic similarity at the sentence and paragraph levels.

4.6 Similarity restoration

It is impossible to obtain the similarity between two documents by comparing them
word by word since it is time-consuming. This study extracts features with different
levels (document level, sentence level and paragraph level) to present the document,
sentence and paragraph and quickly obtain document similarity based on these fea-
tures. However, the similarity estimation by features such as TF–IDF keywords,
sentence vectors or even paragraph vectors may have a slight error with the actual
similarity. Therefore, a similarity restoration mechanism is required to achieve the
truest similarity. This can reduce the estimation error on similarity, which plays an
important role in our design. First of all, it is necessary to generate document sam-
ples. The main purpose is to calculate the estimation error of similarity between the

(49)V like
sm,n

= {V
like

wlike,m,n,1
,V

like

wlike,m,n,2
,… ,V

like

w
like,m,n,�word

like,m,n

}

382 C.-Y. Chang et al.

1 3

JCF method and the actual similarity when the similarity of the article is known. A
sample is generated by removing a certain percentage of a document and keeping
the rest. For example, 20% of document A is removed and only 80% of document
A is reserved. Then, the removed 20% should be replaced by the contents selected
from other documents.

After obtaining a new document, say document B, it is known that the actual sim-
ilarity of documents A and B is 80%. Then, the proposed JCF can be applied to esti-
mate the similarity of the two documents A and B. Therefore, the estimation error
of JCF can be measured. For example, the JCF adopts the extracted features and
detects the 70% similarity between documents A and B. Then, the actual similar-
ity of the two documents can be restored from 70 to 70%* (80%/70%) = 80%. After
calculating the similarity of articles with different proportions many times, the error
results are counted to obtain the average function σ=80%/70%. Through the above
method, after sending a new document into JCF to calculate the similarity value, the
similarity restoration function σ will be applied to obtain the actual similarity.

5 Performance evaluation

This section mainly compares the performance of the proposed algorithm and the
Bert-based and Word2Vec-based algorithms in Plagiarism Detection. The experi-
mental setup is described below. The experimental setup is described below. As
shown in Table 2, the performance results highly depend on the similarity thresholds
and the number of keywords. Therefore, the similarity thresholds would be varied
ranging from 0.3 to 0.9 while the number of keywords is varied ranging from 50 to
500.

Table 2 Simulation settings
Keyword 50/100/300/500
Threshold 0.3/0.5/0.7/0.9
Data source Wiki corpus

provided by
Wikipedia

Number of dataset documents 410,000
Epoch 10
Train data/Test data 410,000/1,000

Table 3 Threshold value set of sample A accuracy

Keyword 0.2 sen-
tence 0.2

Keyword 0.2 sen-
tence 0.5

Keyword 0.5 sen-
tence 0.2

Keyword 0.5
sentence 0.5

Threshold 0.3 0.71 0.79 0.76 0.89
Threshold 0.5 0.72 0.86 0.8 0.94
Threshold 0.7 0.67 0.77 0.73 0.85
Threshold 0.9 0.61 0.75 0.7 0.84

383

1 3

JCF: joint coarse‑ and fine‑grained similarity comparison…

The software platform of the experiment in this research is Windows 10 operat-
ing system, and the development environment is Python 3.7.13. The CPU Intel core
i9-10900 k is used for model training and experiments. The metrics for comparing
the proposed algorithm and the existing Bert and Word2Vec are the accuracy, preci-
sion, recall, and F1-score of the three algorithms. MATLAB is used as the image
display of data.

The experiments in this research will be analyzed based on two training sets A
and B. The samples in A and B are all self-generated documents. To match different
degrees of plagiarism, the similarity range of the generated articles is set between
40 and 80%. The documents in training set A are all generated after partial replace-
ment with words unrelated to the original content, while the documents in training
set B are generated by replacing part of the article content with similar word vectors
which are generated based on the Word2Vec mechanism. The difference between
sets A and B aims to measure whether or not the plagiarism detection algorithms
can detect the similarity at the semantic level. In case the similarity comparison only

Table 4 Threshold value set of sample A precision

Keyword 0.2 sen-
tence 0.2

Keyword 0.2 sen-
tence 0.5

Keyword 0.5 sen-
tence 0.2

Keyword 0.5
sentence 0.5

Threshold 0.3 0.63 0.704 0.68 0.815
Threshold 0.5 0.675 0.805 0.786 0.916
Threshold 0.7 0.72 0.85 0.83 0.963
Threshold 0.9 0.72 0.85 0.83 0.963

Table 5 Threshold value set of sample A recall

Keyword 0.2 sen-
tence 0.2

Keyword 0.2 sen-
tence 0.5

Keyword 0.5 sen-
tence 0.2

Keyword 0.5
sentence 0.5

Threshold 0.3 0.876 0.95 0.916 0.99
Threshold 0.5 0.91 0.97 0.95 1
Threshold 0.7 0.83 0.89 0.86 0.916
Threshold 0.9 0.76 0.83 0.8 0.853

Table 6 Threshold value set of sample A F1-score

Keyword 0.2 sen-
tence 0.2

Keyword 0.2 sen-
tence 0.5

Keyword 0.5 sen-
tence 0.2

Keyword 0.5
sentence 0.5

Threshold 0.3 0.704 0.812 0.791 0.879
Threshold 0.5 0.792 0.879 0.858 0.946
Threshold 0.7 0.773 0.861 0.84 0.907
Threshold 0.9 0.723 0.811 0.79 0.877

384 C.-Y. Chang et al.

1 3

performs on the word-to-word comparison, it is difficult to detect the plagiarism
that existed between two different words where the distance of their word vectors is
small.

Table 7 Value set of sample A
precision

Threshold

0.3 0.5 0.7 0.9

JCF Keyword 50 0.77 0.85 0.95 0.95
100 0.79 0.87 0.96 0.95
300 0.83 0.90 0.96 0.97
500 0.83 0.92 0.96 0.97

Study [14]
based on
Word2Vec

Keyword 50 0.74 0.84 0.94 0.94
100 0.74 0.84 0.94 0.94
300 0.74 0.84 0.94 0.94
500 0.74 0.84 0.94 0.94

Study [13]
based on
Bert

Keyword 50 0.69 0.83 0.94 0.92
100 0.69 0.83 0.94 0.92
300 0.69 0.83 0.94 0.92
500 0.69 0.83 0.94 0.92

Table 8 Value set of sample A
recall

Threshold

0.3 0.5 0.7 0.9

JCF Keyword 50 0.42 0.56 0.97 0.96
100 0.42 0.60 0.97 0.96
300 0.44 0.70 0.92 0.96
500 0.44 0.72 0.91 0.96

Study [14]
based on
Word2Vec

Keyword 50 0.36 0.54 0.90 0.95

100 0.36 0.54 0.90 0.95
300 0.36 0.54 0.90 0.95
500 0.36 0.54 0.90 0.95

Study [13]
based on
Bert

Keyword 50 0.31 0.43 0.88 0.95

100 0.31 0.43 0.88 0.95
300 0.31 0.43 0.88 0.95
500 0.31 0.43 0.88 0.95

385

1 3

JCF: joint coarse‑ and fine‑grained similarity comparison…

5.1 Sample A

The following are the experimental results of sample A. The documents in training
set A are all generated after partial replacement with words unrelated to the original

Table 9 Value set of sample A
F1-score

Threshold

0.3 0.5 0.7 0.9

JCF Keyword 50 0.52 0.72 0.89 0.87
100 0.57 0.74 0.91 0.88
300 0.61 0.82 0.92 0.90
500 0.61 0.82 0.92 0.90

Study [14]
based on
Word2Vec

Keyword 50 0.48 0.66 0.87 0.85

100 0.48 0.66 0.87 0.85
300 0.48 0.66 0.87 0.85
500 0.48 0.66 0.87 0.85

Study [13]
based on
Bert

Keyword 50 0.47 0.65 0.85 0.82

100 0.47 0.65 0.85 0.82
300 0.47 0.65 0.85 0.82
500 0.47 0.65 0.85 0.82

Fig. 3 Precision comparison results of sample A

386 C.-Y. Chang et al.

1 3

content.
Tables 3, 4, 5, and 6 mainly compare the JCF Algorithms threshold settings at

different stages in terms of accuracy, prediction, recall and F1-score. The main of the
experiment is to obtain the best combination of thresholds keywords, sentences and
paragraphs. The keywords thresholds are 0.2 and 0.5, while the sentences threshold
are 0.2 and 0.5. The experimental results show the common trend that the perfor-
mance similarity threshold value of different comparison stages is 0.2, the accuracy
rate is the lowest, the similarity threshold value of different comparison stages is
0.5, and the accuracy rate is the highest. It can be seen from the above, when the

Fig. 4 Recall comparison results of sample A

Fig. 5 F1-score comparison results of sample A

387

1 3

JCF: joint coarse‑ and fine‑grained similarity comparison…

threshold combination of keywords and sentences is both 0.2, the overall accuracy
rate is the lowest. The best results are obtained when the thresholds for keywords,
sentences and paragraphs are all set to 0.5. This is because when the threshold is set
too high, the number of detected documents will be too small. On the contrary, if the
threshold is set too low, most of the information in the documents will be screened,
and the purpose of setting the threshold will be lost.

The previous paragraph explained the impact of the number of keywords in each
article on the comparison results. However, the factors that affect the comparison
results also include the similarity threshold. If the threshold is set too high, the sys-
tem will detect too few articles. If the threshold is set too low, most of the informa-
tion in the article will be included in the screening, and the purpose of setting the
threshold will be lost.

Related studies [13, 14] based on Bert and Word2Vec also use the same eval-
uation method. For example, these studies [13, 14] based on Bert and Word2Vec
first convert the sentences in the article into sentence vectors and then sum up the
sentence vectors to obtain the average value as the article similarity. In addition
to applying the concept of similarity comparison in this study, a similarity resto-
ration algorithm is added to restore each stage in the comparison process to avoid

Table 10 Threshold F1-score set of sample B

Keyword 0.2 sen-
tence 0.2

Keyword 0.2 sen-
tence 0.5

Keyword 0.5 sen-
tence 0.2

Keyword 0.5
sentence 0.5

Threshold 0.3 0.667 0.75 0.71 0.855
Threshold 0.5 0.724 0.835 0.795 0.89
Threshold 0.7 0.62 0.73 0.697 0.81
Threshold 0.9 0.58 0.71 0.667 0.801

Table 11 Threshold accuracy set of Sample B

Keyword 0.2 sen-
tence 0.2

Keyword 0.2 sen-
tence 0.5

Keyword 0.5 sen-
tence 0.2

Keyword 0.5
sentence 0.5

Threshold 0.3 0.59 0.665 0.63 0.775
Threshold 0.5 0.655 0.819 0.756 0.876
Threshold 0.7 0.68 0.81 0.794 0.923
Threshold 0.9 0.68 0.81 0.796 0.923

Table 12 Threshold accuracy set of Sample B

Keyword 0.2 sen-
tence 0.2

Keyword 0.2 sen-
tence 0.5

Keyword 0.5 sen-
tence 0.2

Keyword 0.5
sentence 0.5

Threshold 0.3 0.816 0.889 0.865 0.94
Threshold 0.5 0.86 0.912 0.894 0.95
Threshold 0.7 0.78 0.842 0.81 0.857
Threshold 0.9 0.705 0.766 0.751 0.794

388 C.-Y. Chang et al.

1 3

errors caused by taking the average value of vectors as the similarity of articles. This
makes the final similarity result more accurate.

Tables 7, 8 and 9, and Figs. 3, 4 and 5 mainly compare the performances of the
proposed JCF and the existing studies [13, 14] based on Bert and Word2Vec algo-
rithms in terms of precision, recall and F1-score. The number of keywords varies
ranging from 50 to 300, while the number of thresholds varies ranging from 0.3
to 0.9. The experimental results show the common trend that the performances of
the three JCF mechanisms are increased with the number of keywords, in terms of
prediction, recall and F1-score. This is because the number of features presenting
the document is increased with the number of keywords. In addition, as shown in
Figs. 4 and 5, the JCF mechanism has the best recall and F1-score when the value of
the threshold is 0.5. The main reason is that when the threshold value exceeds 0.7,
the similarity threshold is too high to find similar sentences, paragraphs and docu-
ments. On the contrary, if the threshold value is too smaller, too many sentences,
paragraphs and documents are classified to be similar, but they are not similar. In
comparison, the proposed JCF algorithm is superior to the studies [13, 14] based
on Bert and Word2Vec algorithms in all cases. This occurs because the proposed
JCF adopts the similarity restoration to calculate the similarity in each comparison
stage. On the contrary, the studies [13, 14] based on Bert and Word2Vec algorithms
only calculate similarity using features. As a result, the proposed JCF outperforms
the studies [13, 14] based on Bert and Word2Vec Algorithms in terms of precision,
recall as well as F1-score.

5.2 Sample B

The following depicts the experimental results of sample B. Sample B is generated
by using similar words to replace part of the document content. The removed and
replaced words are similar in word vectors. Therefore, it is more challenging to iden-
tify the content similarity of the documents, as compared with sample A.

Table 13 Threshold recall set of Sample B

Keyword 0.2 sen-
tence 0.2

Keyword 0.2 sen-
tence 0.5

Keyword 0.5 sen-
tence 0.2

Keyword 0.5
sentence 0.5

Threshold 0.3 0.654 0.762 0.745 0.83
Threshold 0.5 0.742 0.827 0.8 0.905
Threshold 0.7 0.723 0.81 0.794 0.857
Threshold 0.9 0.67 0.766 0.735 0.825

Table 14 Operation time
required for sample B

Study [14] based on
Word2Vec

Study [13] based
on Bert

JCF

10,000 74.4 68.2 60.8
15,000 88.5 82.7 77.5
20,000 118.7 110.5 105.8
25,000 136.2 132 128.8

389

1 3

JCF: joint coarse‑ and fine‑grained similarity comparison…

Tables 10, 11, 12 and 13 mainly compare the performance of the JCF Algorithms
in terms of accuracy, prediction, recall and F1-score, respectively, under different
threshold settings. The keywords thresholds are set at 0.2 and 0.5, while the sen-
tence thresholds are set at 0.2 and 0.5. The experimental results show the common
trend that the lowest and highest accuracies have occurred when the threshold values
are 0.2 and 0.5, respectively. The recognition difficulty of the B samples is rela-
tively high. When the thresholds of keywords and sentences are both 0.2, the overall

Table 15 Value set of sample B
precision

threshold

0.3 0.5 0.7 0.9

JCF Keyword 50 0.74 0.84 0.93 0.94
100 0.76 0.84 0.94 0.95
300 0.83 0.90 0.96 0.96
500 0.83 0.90 0.96 0.96

Study [14]
based on
Word2Vec

Keyword 50 0.69 0.83 0.95 0.94

100 0.69 0.83 0.95 0.94
300 0.69 0.83 0.95 0.94
500 0.69 0.83 0.95 0.94

Study [13]
based on
Bert

Keyword 50 0.67 0.80 0.95 0.94

100 0.67 0.80 0.95 0.94
300 0.67 0.80 0.95 0.94
500 0.67 0.80 0.95 0.94

Table 16 Value set of sample
B Recall

Threshold

0.3 0.5 0.7 0.9

JCF Keyword 50 0.35 0.56 0.88 0.96
100 0.40 0.60 0.92 0.96
300 0.44 0.70 0.97 0.96
500 0.44 0.70 0.97 0.96

Word2Vec
Study [14]
based on

Keyword 50 0.33 0.49 0.87 0.95
100 0.33 0.49 0.87 0.95

300 0.33 0.49 0.87 0.95
500 0.33 0.49 0.87 0.95

Study [13]
based on
Bert

Keyword 50 0.31 0.43 0.86 0.95

100 0.31 0.43 0.86 0.95
300 0.31 0.43 0.86 0.95
500 0.31 0.43 0.95 0.95

390 C.-Y. Chang et al.

1 3

accuracy is the lowest. The best results are obtained when the thresholds for key-
words, sentences and paragraphs are all set to 0.5. This is because when the thresh-
old is set at a large value, the number of detected documents will be small. On the
contrary, if the threshold is set at a small value, most of the information in the docu-
ments will be screened.

Table 14 mainly compares the performances of the proposed JCF and the existing
studies [13, 14] based on Bert and Word2Vec Algorithms in terms of CPU running

Table 17 Value set of sample B
F1-score

Threshold

0.3 0.5 0.7 0.9

JCF Keyword 50 0.52 0.72 0.89 0.85
100 0.57 0.74 0.91 0.88
300 0.61 0.82 0.92 0.90
500 0.61 0.82 0.92 0.91

Study [14]
based on
Word2Vec

Keyword 50 0.49 0.65 0.85 0.82
100 0.49 0.65 0.85 0.82
300 0.49 0.65 0.85 0.82
500 0.49 0.65 0.85 0.82

Study [13]
based on
Bert

Keyword 50 0.47 0.60 0.84 0.80
100 0.47 0.60 0.84 0.80
300 0.47 0.60 0.84 0.80
500 0.47 0.60 0.84 0.80

Fig. 6 Precision comparison result of sample B

391

1 3

JCF: joint coarse‑ and fine‑grained similarity comparison…

time. The document length is varied ranging from 10,000 to 25,000. The experimen-
tal results show the common trend that the running times of the three mechanisms are
increased with the document length. In comparison, the JCF method is significantly
faster than other methods. The main reasons are illustrated below. The JCF consists

Fig. 7 Recall comparison result of sample B

Fig. 8 F1-score comparison result of sample B

392 C.-Y. Chang et al.

1 3

of paragraph, sentence and word stages. In each stage, only the important informa-
tion of the article is considered for similarity comparison. Therefore, the whole com-
parison process can be completed in a shorter time. On the contrary, the studies [13,
14] based on Bert and Word2Vec first got the sentence vectors; then, the sentence
similarity of the two articles is compared one by one. In general, the proposed JCF
outperforms the studies [13, 14] based on Bert and Word2Vec algorithms.

Tables 15, 16 and 17, and Figs. 6, 7 and 8 mainly compare the performances
of the proposed JCF and the existing algorithms in terms of precision, recall and
F1-score. The number of keywords varies ranging from 50 to 300, while the num-
ber of thresholds varies ranging from 0.3 to 0.9. The experimental results show the
common trend that the performances of the three JCF mechanisms are increased
with the number of keywords, in terms of prediction, recall and F1-score. This is
because the number of features presenting the document is increased with the num-
ber of keywords. In addition, as shown in Figs. 7 and 8, the JCF mechanism has the
best recall and F1-score when the value of the threshold is 0.5. The main reason is
that the detailed comparison is carried out through many comparison stages when
the threshold is set at 0.5. In addition, the proposed JCF can recognize similar words
and treat them as similar words. On the contrary, the studies [13, 14] based on Bert
and Word2Vec were unable to detect similar words to replace, so the training results
are worse than JCF. As a result, the proposed JCF algorithm is superior to the stud-
ies [13, 14] based on Bert and Word2Vec algorithms in all cases.

In our study, the method (JCF) detected 3,129 similar documents out of a total
of 10,000 compared documents, assuming a similarity threshold of over 70%. Stud-
ies [13, 14] which were developed based on BERT and Word2Vec found 2985 and
3025 similar documents, respectively. The results of our Z-test achieve a P-value of
0.0027, which is less than 0.05, indicating statistical significance.

The document similarity comparison process involves several phases with varying
time complexities. In the Similar Document Identification Phase, the key operation is the
TF–IDF. The time complexity is O(n2) + O(n2*m), where n and m denote the maximal
number of words in each document and the number of documents, respectively. Next, in
the Word Similarity Check Phase, we assume that the length of the Bag of Words is k.
Each document has a vector with length k. Then, the m documents will be sorted to find
out the maximum one. The time complexity for sorting is bounded by O(m log m). In
the third phase, the Sentence Similarity Check Phase, the comparison of sentence simi-
larity requires O(k) since the maximal number of similar words is k. In the worst case,
there are k paragraphs needed to be further compared in paragraph-level comparison.
Therefore, the complexity of paragraph-level comparison is O (k). Finally, in the Docu-
ment Similarity Check Phase, a word-by-word comparison was performed. This required
time complexity O (n2). Therefore, the overall time complexity is O(n2*m).

Finally, the proposed mechanism does not compare a document with all docu-
ments in a word-by-word manner since it is inefficient. In fact, this study employed
a cost-effective approach. Initially, the TF–IDF scheme is applied to build a bag of
words as the representation of the common features of all documents. Then, the pla-
giarism comparison is carried out in a coarse-grained manner. This can speed up the
similarity comparison for the target document. Next, the most similar documents
are compared with the target document in detail based on a fine-grained approach.

393

1 3

JCF: joint coarse‑ and fine‑grained similarity comparison…

Therefore, the sentence similarity and document similarity of very few documents
will be compared with the target document in detail. As a result, the proposed
approach requires low comparison costs.

6 Conclusion

This paper proposes a JCF algorithm, aiming at proposing a document similarity com-
parison mechanism. The JCF can reduce the time required for comparing documents.
Initially, the TF–IDF scheme is applied to construct a bag-of-words representation that
captures the common features of all documents. Plagiarism comparisons are then con-
ducted at a coarse-grained level, which accelerates the similarity comparison of the tar-
get documents. Subsequently, the most similar document is compared in detail with the
target document using a fine-grained approach. As a result, only a few selected docu-
ments undergo a thorough comparison in terms of sentence and document similarity.
Consequently, the proposed method incurs a low comparison cost. The performance
results demonstrate that the proposed JCF outperforms existing mechanisms in vari-
ous aspects. Different from existing studies, the proposed mechanism does not directly
compare documents with each other, as it would be inefficient. Instead, a cost-effective
approach was taken in this study. Future work will handle document similarity compar-
ison in multilingual settings. We will investigate techniques to handle language-specific
characteristics and develop strategies for cross-lingual similarity comparisons.

Author contributions Conceptualization was performed by CYC, SJJ;methodology by CYC, SJJ,
SJW;formal analysis by CYC, SJJ;writing—original draft preparation—by CYC, SJJ;writing—review
and editing—by DSR. All authors have equally contributed, and all authors have read and agreed to the
published version of the manuscript.

Funding This study was not funded by any institution.

Data availability The data sets generated during the current study are not publicly available but are avail-
able from the corresponding author.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Informed consent All participating authors have been informed.

Ethical approval This study does not involve either human subjects or animals.

References

 1. Kabra B, Nagar C (2023) Convolutional neural network based sentiment analysis with TF–IDF
based vectorization. J Integrated Sci Technol 11(3):503–503

394 C.-Y. Chang et al.

1 3

 2. Abid MA, Mushtaq MF, Akram U, Abbasi MA, Rustam F (2023) Comparative analysis of TF–IDF
and loglikelihood method for keywords extraction of twitter data. Mehran Univ Res J Eng Technol
42(1):88–94

 3. Sharma A, Kumar S (2023) Ontology-based semantic retrieval of documents using Word2Vec
model. Data Knowl Eng 144:1–18

 4. Jaca-Madariaga M, Zarrabeitia-Bilbao E, Rio-Belver RM, Moens MF (2023) Sentiment analy-
sis model using Word2Vec, Bi-LSTM and attention mechanism. IoT Data Sci Eng Manage
160:239–244

 5. Zim SK, Ashraf F, Iqbal T, Islam MA, Polok IK, Ahmed L, Mukta MSH (2023) Exploring Word-
2Vec embedding for sentiment analysis of Bangla raw and romanized text. Proc Int Conf Data Sci
Appl 2:677–691

 6. Aoumeur NE, Li Z, EM Alshari (2023) Improving the polarity of text through word2vec embedding
for primary classical arabic sentiment analysis. Neural processing letters, pp 1–16

 7. Suleiman D, Awajan A, Al-Madi N (2017) Deep learning based technique for plagiarism detection
in Arabic texts. In: International Conference on New Trends in Computing Sciences (ICTCS), pp
216–222

 8. Luo Q, Xu W (2014) A study on the CBOW model’s overfitting and stability. Association for Com-
puting Machinery, pp 9–12

 9. Shi T, Li X, Liu Z, Wang L (2022) Research on Bi-LSTM machine reading comprehension algo-
rithm based on attention mechanism. J Phys Conf Ser 2258:1–8

 10. Jing S, Liu X, Gong X, Tang Y, Xiong G (2022) Correlation analysis and text classification of
chemical accident cases based on word embedding. Process Saf Environ Prot 158:698–710

 11. Styawati S, Nurkholis A, Aldino A, Samsugi S, Suryati E, Cahyono RP (2022) Sentiment analysis
on online transportation reviews using Word2Vec text embedding model feature extraction and sup-
port vector machine (SVM) algorithm. International Seminar on Machine Learning, Optimization,
and Data Science (ISMODE), pp 163–167

 12. Rahutomo F, Kitasuka T, Aritsugi M (2012) Semantic cosine similarity. Int Stud Conf Adv Sci
Technol ICAST 4(1):1

 13. Xia P, Zhang L, Li F (2015) Learning similarity with cosine similarity ensemble. Inf Sci 307:39–52
 14. Bohra A, Barwar N (2022) A deep learning approach for plagiarism detection system using BERT.

In: Congress on Intelligent Systems, pp. 163–174
 15. Xia C, He T, Li W, Qin Z, Zou Z (2019) Similarity analysis of law documents based on Word2Vec.

In: International Conference on Software Quality, Reliability and Security Companion (QRS-C), pp
354–357

 16. Harris ZS (1954) Distributional structure. Word 10(2–3):146–162
 17. Zhang Y, Jin R, Zhou Z-H (2010) Understanding bag-of-words model: a statistical framework. Int J

Mach Learn Cybern 1(1):43–52
 18. Rosu R, Stoica AS, Popescu PS, Mihăescu MC (2021) NLP based deep learning approach for pla-

giarism detection. In: RoCHI-International Conference on Human-Computer Interaction, Romania,
pp 48–60

 19. Yalcin K, Cicekli I, Ercan G (2022) An external plagiarism detection system based on part-of-
speech (POS) tag N-grams and word embedding. Expert Syst Appl 197:1–16

 20. Awale N, Pandey M, Dulal A, Timsina B (2020) Plagiarism detection in programming assignments
using machine learning. J Artif Intell Capsul Netw 2(3):177–184

 21. Ramadhanti NR, Mariyah S (2019) Document similarity detection using indonesian language Word-
2Vec model. In: International Conference on Informatics and Computational Sciences (ICICoS), pp
1–6

 22. Qurashi AW, Holmes V, Johnson AP (2020) Document processing: methods for semantic text simi-
larity analysis. In: International Conference on INnovations in Intelligent SysTems and Applications
(INISTA), pp 1–6

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

	JCF: joint coarse- and fine-grained similarity comparison for plagiarism detection based on NLP
	Abstract
	1 Introduction
	2 Related work
	3 Assumptions and problem formulation
	4 The proposed JCF mechanism
	4.1 Coarse grain: similar document identification phase
	4.2 Fine grain: word similarity check phase
	4.3 Fine grain: sentence similarity check phase
	4.4 Fine grain: paragraph similarity check phase
	4.5 Fine grain: document similarity check phase
	4.6 Similarity restoration

	5 Performance evaluation
	5.1 Sample A
	5.2 Sample B

	6 Conclusion
	References

