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RLR: Joint Reinforcement Learning and Attraction
Reward for Mobile Charger in Wireless

Rechargeable Sensor Networks
Cuijuan Shang, Chih-Yung Chang , Member, IEEE, Wen-Hwa Liao , Member, IEEE, and Diptendu Sinha Roy

Abstract—Advances in wireless charging technology give great
new opportunities for extending the lifetime of a wireless sen-
sor network (WSN) which is an important infrastructure of
IoT. However, the existing greedy algorithms lacked learning
from the experiences of energy dissipation trends. Unlike the
existing studies, this article proposes a reinforcement learning
approach, called reinforcement learning recharging (RLR), for
mobile charger to learn the trends of WSNs, including the energy
consumption of the sensors, the recharging cost as well as the
coverage benefit, aiming to maximize the coverage contribu-
tion of the recharged WSN. The proposed RLR mainly consists
of three modules, including sensor energy management (SEM),
charger location update (CLP), and charger reinforcement learn-
ing (CRL) modules. In the SEM module, each sensor manages
its energy and calculates its threshold for the recharging request
in a distributed manner. The CLP module adopts the quorum
system to ensure effective communication between sensors and
the mobile charger. Meanwhile, the CRL module employs attrac-
tion rewards to reflect the coverage benefit and penalties of
waiting time raised due to charger movement and recharging
other sensors. As a result, the charger accumulates the learn-
ing experiences from the Q-Table such that it is able to execute
the appropriate actions of charging or moving in a manner of
state management. Performance results show that the proposed
RLR outperforms the existing recharging mechanisms in terms
of charging waiting time of sensors, the energy usage efficiency
of the mobile charger, as well as the coverage contribution of the
given sensor network.

Index Terms—Mobile charger, recharging mechanism, rein-
forcement learning, wireless rechargeable sensor network
(WRSN).

Manuscript received 21 August 2022; revised 25 February 2023; accepted
11 April 2023. Date of publication 14 April 2023; date of current version
7 September 2023. This work was supported in part by the Natural Science
Foundation of Anhui Province under Grant 2108085QF266; in part by the
Higher Education Research Program Project under Grant 2022AH030109,
Grant 2022AH040153, and Grant 2022AH010067; in part by the Scientific
Research Project of Chuzhou University under Grant 2022XJYB05; and
in part by the Ministry of Science and Technology of Taiwan under
Grant MOST 111-2221-E-032-015 and Grant MOST 111-2221-E-032-014.
(Corresponding author: Chih-Yung Chang.)

Cuijuan Shang is with the School of Computer and Information
Engineering, Chuzhou University, Chuzhou 239000, China (e-mail:
shangcuijuan@chzu.edu.cn).

Chih-Yung Chang is with the Department of Computer Science and
Information Engineering, Tamkang University, Taipei 25137, Taiwan (e-mail:
cychang@mail.tku.edu.tw).

Wen-Hwa Liao is with the Institute of Information and Decision Sciences,
National Taipei University of Business, Taipei 25137, Taiwan (e-mail:
whliao@ntub.edu.tw).

Diptendu Sinha Roy is with the Department of Computer Science and
Engineering, National Institute of Technology Meghalaya, Shillong 793003,
India (e-mail: diptendu.sr@nitm.ac.in).

Digital Object Identifier 10.1109/JIOT.2023.3267242

I. INTRODUCTION

W IRELESS sensor network (WSN) is an important and
basic infrastructure of the Internet of Things. It has

been applied in many applications, such as environment mon-
itoring [1], localizations [2], smart healthcare [3], intelligent
manufacturing [4], and wisdom agriculture [5]. The major task
of each sensor in WSNs is to perform the sensing and com-
munication operations. However, each sensor is powered by
battery which is difficult to be replaced in some harsh con-
ditions. The WSNs will be inefficient if too many sensors
run out of energy. Therefore, replenishing sensor’s battery
has attracted much attention of researchers and plenty of
algorithms have been proposed to prolong the lifetime of
WSNs [6], [7], [8], [9].

The WSNs that can be energy replenished are called wire-
less rechargeable sensor networks (WRSNs) [10]. In the
literature, plenty of energy replenishing algorithms have been
proposed. These algorithms can be classified into two types,
including environmental energy harvesting [7], [11], [12] and
mobile charger charging [13], [14], [16], [17], [18], [19],
[20], [21]. There are many environmental energy resources,
such as solar and wind, which can be harvested to renew
sensor’s battery. However, an inevitable drawback of environ-
mental energy harvesting is the inherent dynamics of energy
sources. When energy sources are not available, sensor nodes
may stop working, leading to long data latency or even data
loss in the network. With the development of the wireless
charging technologies, energy recharging of sensors based on
the mobile charger have become another hot topic in the WSN.

The recharging algorithms for the mobile charger can be
mainly divided into two classes, including offline and online.
In the offline class, the mobile charger moved according to
a recharging schedule which was a decision made according
to a sequence of recharging requests from low-energy sen-
sors. Those algorithms aimed to plan the optimal path for
the mobile charger and were suitable for the traffic balanc-
ing scenarios. However, the decision will not be changed with
the new receiving requests until the recharging task has been
completed. Different from the offline recharging algorithms,
the online ones dynamically adjusted the recharging sched-
ule based on the received recharging requests from sensors in
real time. Since the mobile charger can receive new requests
from sensors, the schedule which was made according to the
previous requests was usually difficult to meet the requirement
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of the new requests. As a result, it is a big challenge to develop
a greedy algorithm which satisfies the on-demand requests
received from sensors in the networks. The online algorithms
have the advantage that they can greedily update the charg-
ing schedule according to the new charging requests. However,
they lacked learning from the experiences of energy dissipation
trends of the WSNs.

Different from the existing work, this article proposes a
reinforcement learning approach, called reinforcement learn-
ing recharging (RLR), for the mobile charger to learn the
trends of WSNs, including the energy consumption of the sen-
sors, the recharging and moving costs, as well as the coverage
benefit, aiming to maximize the coverage contribution of the
given WRSN. The proposed RLR employs rewards to reflect
the coverage benefit and the penalties of sensor’s waiting time
which are raised due to the charger’s movement and battery
recharging of those sensors scheduled in a prior order. This
helps the mobile charger accumulate the learning experiences
from the Q-Table such that the mobile charger learns to exe-
cute appropriate actions based on the state management. The
contributions of this article are itemized as follows.

1) Adaptive Recharging Request: Different from the exist-
ing work [15], [16], [17], this article considers the
scenario that sensors might have different energy con-
sumption rates due to the different forwarding loads.
Therefore, each sensor will adaptively calculate its own
recharging threshold to send the recharging request at
the right time in a distributed manner.

2) Learning the Trend of Network Performance: To the
best of our knowledge, this article first employs rein-
forcement learning to learn the trends of WRSNs,
including the energy consumption of the sensors, the
recharging cost as well as the coverage benefit. It
takes into account the learned trend when scheduling
the recharging order, aiming to improve the recharg-
ing efficiency and maximize the coverage of the given
WRSN. Performance results show that the proposed
RLR mechanism outperforms its competitors in terms
of the recharging efficiency and the network coverage.

3) Design of Attraction Reward to Reflect the Coverage
Benefit and Penalty of Waiting Time: The proposed RLR
designed the attraction rewards which reflect the cover-
age benefit and the penalty of waiting time. This helps
the mobile charger accumulate the learning experiences
from Q-Table such that it executes appropriate actions
based on state management. The mobile charger per-
forms an action in each state based on the attraction
reward of multiple requested sensors. The learning expe-
riences, stored in Q-Table, help the mobile charger learn
to gain the maximal coverage benefit when the mobile
charger takes an action in each state.

4) Consideration of Sensor Coverage Contribution: Most
existing studies [19], [20], [21] considered the remain-
ing energies of sensors and the distances between the
requested sensors and the mobile charger, aiming to
maximize the number of recharged sensors. Unlike the
existing work, this article takes into consideration the
coverage of each requested sensor in the design of

the attraction reward, aiming to maximize the surveil-
lance quality of the monitoring region. Performance
results demonstrate that the proposed RLR achieves bet-
ter performance than its competitors in terms of coverage
ratio.

The remainder of this article is organized as follows.
Section II reviews the existing work related to the recharging
issues in WRSNs. Section III presents the network envi-
ronment and problem statement of the investigated issue.
Section IV describes the proposed RLR in detail. Section V
gives the simulation experiments and their results. Finally,
a conclusion and future work of this article is drawn in
Section VI.

II. RELATED WORK

In recent years, the recharging problem based on the mobile
charger in WRSNs has received much attention. Plenty of
recharging algorithms have been proposed to maintain the
lifetime of WRSNs. These studies can be classified into two
classes, including offline and online. The following reviews
these studies and compares them with this work.

A. Offline Recharging Class

For the offline recharging algorithms, the mobile charger
moved along a predefined path to charge sensors periodi-
cally, aiming to achieve the perpetual lifetime of the network.
Study [13] investigated the paradigm that a mobile charger
recharged multiple sensors simultaneously under the con-
straint of the charger’s energy capacity. The charging scheme,
named Alg01, constructed a closed charging path, aiming to
maximize the accumulative charging utility gain. Meanwhile,
the minimization problem of charging path length was dis-
cussed if all requested sensors must be charged, assuming
that the mobile charger has sufficient energy to support all
requested sensors. However, the proposed mechanism aimed
to maximize the charging utility without considering the mon-
itoring quality. The mechanism also lacks the support of
on-demand service in terms of energy recharging since it did
not consider the newly received recharging requests.

Study [14] employed a mobile charger to replenish sen-
sors in the WRSNs. To estimate the energy efficiency of
the mobile charger, it proposed a new metric named waste
rate, which was defined as a function of the charging channel
quality. Then, the energy efficiency optimization was mod-
eled as the problem of minimizing the waste rate. A set of
optimal sensor nodes was selected according to the distances
between the mobile charger and sensor nodes. Then, a trav-
eling path was constructed for the mobile charger by using
the Hamiltonian circle. However, the coverage contribution of
each sensor was not considered when selecting the optimal
sensor node. Furthermore, it belongs to the offline class which
did not dynamically consider the newly received requests.

Study [15] proposed a multinode temporal spatial partial-
charging algorithm (MTSPC), aiming to jointly optimize the
number of dead sensors and the energy usage effectiveness
(EUE). The MTSPC employed the partial charging mecha-
nism, which introduced the concept that the mobile charger can
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fully charge a sensor by multiple times. At the beginning of a
charging circle, a charging path was constructed for the mobile
charger based on the remaining energies of sensors. Then, the
mobile charger moved along the charging path to visit a series
of selected sojourn locations. If some sensors were unable
to be recharged in time, the mobile charger would apply the
partial charging policy to rescue them. However, the partial
charging mechanism leads to a long charging path, resulting
in a low charging utility. In addition, the proposed mechanism
belonged to the offline class, which did not consider the newly
received recharging requests.

Study [16] proposed a utility-based collaborative charging
(UBCC) strategy to maximize the charging utility of mobile
chargers in large-scale WRSNs. Different mobile chargers
played different roles and served diverse power replenish-
ment areas. A path merging scheme was proposed to save
path length and reduce the number of mobile chargers. An
idle-difference alleviating scheme was devised to improve the
utilization rate of mobile chargers. In addition, an energy-
waste averting scheme was designed to maximize the energy
utilization of mobile chargers. However, all mobile charg-
ers were allocated a part of the same trajectory, aiming to
exploit the opportunities of charging collaboration and reduce
path length. The fixed path indicates that the proposed UBCC
belongs to the offline class.

B. Online Recharging Class

The online recharging mechanisms timely adjusted the
recharging schedule for the mobile charger according to the
new received recharging requests from sensors. Therefore, they
were able to handle the emergent requests. Furthermore, these
algorithms can take advantage of path reduction when the loca-
tions of newly requested sensors were closed to the mobile
charger.

Study [17] proposed a named data networking (NDN)-based
real-time wireless recharging protocol for dynamic wireless
recharging in sensor networks. To efficiently deliver sensor
energy status information to vehicles in real time, it leveraged
concepts and mechanisms from NDN and designed energy
monitoring and reporting protocols. The charging schedule
was designed according to the minimum weighted sum of trav-
eling time and residual lifetime of sensors. Furthermore, given
a set of to-be-charged sensors with different residual lifetimes,
an adaptive algorithm was designed to charge a proportion
of the sensors before their energy expirations [18]. However,
studies [17], [18] aimed to improve the utility of recharging.
They did not take into account the coverage of the sensor when
determining the recharge schedule. Therefore, it was difficult
to guarantee the surveillance quality.

Study [19] proposed a Primary and Passer-by Scheduling
(P2S) algorithm for online charging architecture in large-scale
WRSNs. In P2S, several primary sensors were selected based
on the remaining energy and the distance to the mobile charger.
Then, a Hamiltonian path was constructed for the mobile
charger to visit the primary sensors. After that, a local search-
ing algorithm was exploited to find nearby requested nodes
as the passer-by nodes. Such a strategy not only made full

use of the available remaining time of a charging deadline
but also solved the complex scheduling problem with spatial
and temporal task interdependency. However, similar to stud-
ies [17], [18], the surveillance quality was not guaranteed since
the coverage contribution of each sensor was not considered
when constructing the charging path.

Study [20] developed a temporal–spatial charging schedul-
ing algorithm, namely, TSCA, aiming to minimize the number
of dead nodes while maximizing energy efficiency to prolong
the network lifetime. The mobile charger determined a feasi-
ble movement schedule after collecting a certain amount of
charging requests. A basic path planning algorithm was then
introduced to adjust the charging order for better efficiency.
Then, a node deletion algorithm was developed to remove
low efficient charging nodes. Finally, a node insertion algo-
rithm was executed to avoid the death of abandoned nodes.
However, the TSCA was unable to learn from the past charging
experiences.

Study [21] proposed a charging scheduling mechanism
based on the fussy logic, named FLCS, which was effective
to deal with the uncertainties in the network. In study [21],
different network parameters, such as residual energy, distance
to the mobile charger, and critical node density, were blended
to make decisions. In addition, it took into account the spa-
tial, temporal, and energy constraints together. However, the
coverage contribution of each sensor was not considered.

Study [22] proposed an importance-different charging
scheduling (IDCS) strategy for improving charging utility
as well as reducing the data loss. The proposed IDCS dis-
tinguished sensors in terms of different importance of data
delivery. The sensor with greater importance and shorter dead-
line has a higher priority of being included in the early
charging tasks. In addition, the charging sequence in the tra-
jectory of the mobile charger could be adjusted to maximize
the charging utility and reduce the path length. However, simi-
lar to study [21], the coverage contribution of each sensor was
not considered.

Although the studies in the second category constructed the
recharging path in an online manner, none of them considered
the coverage contribution of the sensors. Hence, the surveil-
lance quality of the WSNs is unpredictable. In addition, the
proposed algorithms greedily made decisions according to the
considered parameters at the moment, including the remaining
energies of the requested sensors and the cost of path length.
These lacks learning the trend of energy dissipation from long-
time network operations. Different from the previous studies,
this article proposes a reinforcement learning approach for
the mobile charger to learn the trends of WSNs, including
the energy consumption of the sensors, the recharging cost as
well as the coverage benefit, aiming to maximize the coverage
contribution of the recharged WRSN.

III. NETWORK ENVIRONMENT AND PROBLEM STATEMENT

This section initially introduces the network environment
and assumptions of the given WSNs. Then, the problem
statements and constraints are described.
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Fig. 1. Network environment.

A. Network Environment and Assumptions

This article considers the following scenario. A given mon-
itoring region W has been randomly deployed with a set of
sensors B = {b1, b2, . . . , b|B|}. Each sensor bi is aware of its
physical location, denoted by Lsensor

i (x, y) or Lsensor
i in short

for 1 ≤ i ≤ |B|. Each sensor is stationary and powered by a
rechargeable battery with the capacity E. It is assumed that
the sink node is placed at the center of region W , aiming to
collect data from all sensors. A mobile charger M is initially
located at the center of the region. It will move to charge
sensors in the network once it receives recharging requests
from sensors. Let Lcharger

t (x, y) or Lcharger
t in short, denote the

location of M at time t. The energy of charger M is assumed
to be unlimited. This assumption can be achieved if there is
another backup mobile charger is on standby in a fix location.
The charging radius is denoted by rch. The charger M charges
sensors at a fixed charging rate αch and moves at a fixed
speed v.

To simplify the actions of charger M, the monitoring region
W is divided into N hexagonal grids G ={gi, 1 ≤ i ≤ N}. Let
ζ denote the side length of the hexagon grid and Lgrid

i (x, y)
or Lgrid

i in short denote the center location of each grid gi.
If the charger M arrives at Lgrid

i , it is said to stay in state si.
We assume that charger M executes the charging task only if
it stays at the grid center and all sensors in that grid can be
charged at the same time. Meanwhile, the charger M only
moves along the path formed by the centers of grids. Let
κi denote the ith direction starting clockwise from the north.
When a mobile charger locates at the center of a grid, it can
move to its neighboring grid in six directions from κ1 to κ6, as
shown in Fig. 1, or simply performs the recharging operation
for the sensors in that grid.

B. Problem Statements

This article aims to develop a recharging mechanism for a
mobile charger M based on reinforcement learning, aiming to
maximize the coverage contribution of the given network. The
following presents the problem formulation of this work.

Let oi denote the coverage area of sensor bi, which is a
region enclosed by a circle with dashed lines as shown in
Fig. 2. Let Ni denote the set of neighboring nodes of bi. The
area only covered by sensor bi is defined as the independent
coverage area of bi. Let ci denote the independent coverage

Fig. 2. Independent coverage.

area for sensor bi, as shown in Fig. 2. ci can be calculated by

ci = oi\
⋃

bj∈Ni

oj. (1)

Each sensor bi has three working states, including Strong
Working, Weak Working and Sleeping states. The rechargeable
battery of each sensor initially has the fixed capacity E. Since
the forwarding loads of different sensors might be different,
each sensor bi has its own energy consumption rate, denoted
by αdisch

i . Let erem,t
i denote the remaining energy of sensor bi

at time t. If sensor bi has rich remaining energy, it is said
to stay in Strong Working state. In this state, the remaining
energy erem,t

i is larger than a recharging threshold ech
th,i. If erem,t

i
is reduced to the recharging threshold ech

th,i, sensor bi should
send the recharging request to the mobile charger and switch to
the Weak Working state. Furthermore, if erem,t

i is smaller than
the sleep threshold esleep

th , sensor bi should switch to Sleeping
state. In the Sleeping state, sensor bi stop its sensing opera-
tion for energy conservation. This also leads to the loss of its
own independent coverage. Assume that sensor bi switches to
Sleeping state at time t1. Then, the coverage loss of sensor bi

at current time t, denoted by closs
i , can be calculated by

closs
i = (t − t1) ∗ ci. (2)

Let λ
work,t
i denote a Boolean variable, representing whether

or not sensor bi works at time t. That is

λ
work,t
i =

{
1, erem,t

i ≥ esleep
th

0, erem,t
i < esleep

th .
(3)

Let τ denote a unit of time slot. Considering a given time
period T which can be divided into many slots, denoted by
T = {τ1, . . . , τx}, where x = (T/τ). Let Closs

j denote the total
coverage loss of all sensors during time slot τj. Closs

j can be
calculated by

Closs
j =

∑

bi∈B

(
1 − λ

work,τj
i

)
∗ ci. (4)

Recall that W denotes the considered monitoring region.
Expression (5) presents the objective function of this article.

Objective: This article aims to maximize the coverage con-
tribution of all sensors in the given network during a given
time period T. That is

max

⎛

⎝
∑

τj∈T

(
W − Closs

j

)
⎞

⎠. (5)
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C. Constraints

The size of the grid can impact the charging and movement
efficiencies of the mobile charger. Since the mobile charger
M is assumed to be able to charge all sensors in the grid
when it locates at the grid center, the side length ζ of the
grid should not be larger than the charging radius rch of the
mobile charger. On the contrary, the grid size should have a
lower bound. This occurs because a smaller grid can cause
that the mobile charger should maintain a large number of
states. In case that there is no sensor in a small grid, it is
impossible to execute the recharging action. This will result
in the inefficiency management of the state.

The following derives the lower bound of the grid size.
Recall that notations W and |B| denote the monitoring region
and number of sensors, respectively. The area size of a grid
can be calculated by the expression ([3

√
3ζ 2]/2). Let |W |

denote the area size of region W . The number of grids can
be computed by the expression (2|W|/[3

√
3ζ 2]). Since it

is expected that each grid has at least one sensor, we have
(2W/[3

√
3ζ 2]) ≤ |B|. The following grid constraint reflects

the upper and lower bounds of each grid size.
1) Grid Constraint: The grid size should satisfy the follow-

ing expression.
√

2W
3
√

3|B| ≤ ζ ≤ rch. (6)

Recall that each sensor bi has three states which are related
to the remaining energy erem,t

i . Let λ
request,t
i denote a Boolean

variable, representing whether or not sensor bi has sent a
recharging request to a mobile charger at time slot t. That is

λ
request, t
i =

{
1, erem,t

i ≤ ech
th,i

0, erem,t
i > ech

th,i.
(7)

Let ϕSW
i , ϕWW

i and ϕ
Sleep
i denote three Boolean variables

representing whether or not sensor bi is in the Strong Working
state, Weak Working state, and Sleeping state, respectively.
Recall that notation λ

work,t
i denotes a Boolean variable which

represents whether or not sensor bi works at time t. We have

ϕSW
i =

{
1, λ

work,t
i = 1, λ

request, t
i = 0

0, otherwise
(8)

ϕWW
i =

{
1, λ

work,t
i = 1, λ

request, t
i = 1

0, otherwise
(9)

ϕS
i =

{
1, λ

work,t
i = 0, λ

request, t
i = 1

0, otherwise.
(10)

The following presents the sensor state constraint.
2) Sensor State Constraint: Any sensor bi can only stay in

one of three states at any time slot. This constraint is given as
shown in (11).

ϕSW
i + ϕWW

i + ϕS
i = 1, for ∀bi ∈ B. (11)

In addition to the sensor state constraint, another constraint
restricts that each sensor should send the recharging request
to the mobile charger before it entering the sleeping state. The
following presents the recharging request constraint.

3) Recharging Request Constraint: Any sensor bi should
send the recharging request to the mobile charger before it
entering the sleeping state. This constraint is given as shown
in (12).

λ
request,t
i ≥ λ

work,t
i , for ∀bi ∈ B. (12)

The goal, as shown in (5), of this article is to maximize the
coverage contribution of all sensors in the given network dur-
ing a given time period T while satisfying the Grid Constraint,
Sensor State Constraint as well as the Recharging Request
Constraint.

IV. PROPOSED RECHARGING MECHANISM

This section presents the proposed recharging mechanism
that aims to achieve the goal given in (5) while satisfying con-
straints given in (6), (11), and (12). Each sensor, say bi, should
send a recharging request to the mobile charger M as soon as
its remaining energy is lower than the recharging threshold
ech

th,i. Since the charger M keeps moving, sensors that need to
be charged should acquire the location of charger M before
sending the recharging request. The charger M should learn a
recharging schedule by applying the proposed reinforcement
learning. The proposed recharging mechanism mainly con-
sists of three modules, including sensor energy management
(SEM), charger location update (CLP) and charger reinforce-
ment learning (CRL). In the SEM, the major task of each
sensor is to manage its energy, including managing its remain-
ing energy, determining its own request threshold as well as
sending the recharging request to the mobile charger. The CLP
mainly updates the location of the mobile charger using the
Quorum system, aiming to help sensors acquire the location
of charger M before sending the recharging requests. In the
CRL, the mobile charger M aims to learn a better recharg-
ing schedule by adopting the proposed reinforcement learning
algorithm.

A. Sensor Energy Management

Each sensor will manage its operations according to the
proposed state diagram. As shown in Fig. 3, each sensor stays
in one of the three possible states, including Strong Working,
Weak Working, and Sleeping states. The change of states
depends on the remaining energy of the sensor. Each sensor
initially has a full energy and stays in the Strong Working
state. In this state, each sensor contributes its coverage and
sends its readings to the static sink in a multihop manner.

The following uses sensor bi to present the operations
of each sensor. As long as the remaining energy erem,t

i is
smaller than the threshold ech

th,i, sensor bi switches to the
Weak Working state and sends the recharging request to the
mobile charger M to ask for recharging. Since the mobile
charger M keeps moving, sensor bi should acquire its location
before sending the recharging request. To reduce the com-
munication costs, the CLP procedure is proposed, which will
be detailed in the next section. After obtaining the location
of charger M, sensor bi sends a recharging request (CReq)
packet to charger M using the greedy perimeter stateless rout-
ing (GPSR) [2]. The content of CReq packet can be expressed
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Fig. 3. Sensor state diagram.

as [bi, Lsensor
i , erem,t

i , αdisch
i , Lcharger

tnow
, tnow], where αdisch

i is
the energy consumption rate of sensor bi at current time tnow.
Since the communication overloads of different sensors are
different, the values of αdisch

i can be different. The following
presents the calculation of αdisch

i .
Let � denote a fixed time period used to compute αdisch

i .
Recall that erem,t

i denotes the remaining energy of sensor bi

at time t. Similarly, erem,t−�
i denotes the remaining energy

of sensor bi at time t − �. Therefore, the recent energy con-
sumption rate during time period [t, t − �] can be expressed
by ([(erem,t−�

i − erem,t
i )]/�). Let αdisch

i [t] denotes energy con-
sumption rate from the initial time t0 to time t. Then, the value
of αdisch

i [t] can be evaluated by applying

αdisch
i [t] = (1 − ρ)αdisch

i [t − �] +
ρ ∗

(
erem,t−�

i − erem,t
i

)

�
(13)

where ρ is a coefficient to adjust the weights of historical
energy consumption rate αdisch

i [t −�] and recent energy con-
sumption rate. When the value of ρ is larger, αdisch

i is more
dependent on the recent energy consumption rate.

Since the αdisch
i values of different sensors might be dif-

ferent, the thresholds ech
th,i for sending the CReqs could be

different. According to its energy consumption rate, each sen-
sor bi should determine the threshold ech

th,i and the time of
sending CReq packet. Let t be the current time. Assume that
sensor bi has sent the CReq packet k times and has been
recharged k times. Let trequest

i,k and tch
i,k denote the kth time for

sending the CReq packet and the kth recharged time of sensor
bi, respectively. Then, the average waiting time for recharg-
ing of sensor bi at current time t, denoted by Twait

i,t , can be
expressed by

Twait
i,t =

∑
k

(
tch
i,k − trequest

i,k

)

k
. (14)

Then, the value of ech
th,i can be calculated by

ech
th,i = αdisch

i ∗ Twait
i,t . (15)

It implies that sensor bi should send a CReq packet to ask for
recharging when its remaining energy is smaller than ech

th,i.
Staying in the Weak Working state, sensor bi still contributes

its coverage and sends its readings to the sink node peri-
odically. In case that it is actually recharged by charger M,
it switches to the Strong Working state. Once the remaining

Fig. 4. Construction of a quorum system.

energy erem,t
i is smaller than the threshold esleep

th , sensor bi

switches to the Sleeping state. In the Sleeping state, sensor bi

stops to perform sensing operation. Once it is recharged by
charger M, it switches to the Strong Working state.

B. Charger Location Update

To minimize the coverage loss, sensor bi should send the
recharging request to the mobile charger M and expect that
M can visit it within its average waiting time Twait

i,t . However,
the location of M might be changed with time. To efficiently
deliver the location updates of charger M, the mobile charger
and each sensor will cooperatively perform the following loca-
tion update procedure in a distributed manner. This can help
each sensor maintain the current location of the mobile charger
M with a low communication cost. The following presents the
location update procedure.

The location update procedure is designed based on the
quorum system. A quorum system is a set of subsets (called
quorums) such that any two quorums have a nonempty
intersection. Consider two quorums: 1) supply and 2) demand
quorums. Let qsupply

t and qdemmend
i,t denote the supply and

demand quorums, which are constructed by mobile charger
M and sensor bi at time slot t, respectively. The following
will introduce the construction of a quorum system by using
an example as shown in Fig. 4.

Assume that mobile charger M arrives at the center of the
grid ga at the current time tcurr. Let Lcharger

tcurr
(x, y) denote the

location of M at time slot tcurr. The mobile charger M should
actively construct a supply quorum Qsupply

tcurr
which includes the

grids marked with blue ink as show in Fig. 4 at the current
time slot tcurr. That is

Qsupply
tcurr

=
{

gk|Lgrid
k · x = Lcharger

tcurr
· x ± 3ζ

2
l

Lgrid
k · y =

{
Lcharger

tcurr
.y l%2 = 0

Lcharger
tcurr

· y +
√

3ζ
2 l%2 = 1

s.t. 0 ≤ Lgrid
k .x ≤ √

W, where l = {0, 1, 2, . . .}
}
.

To physically construct the supply quorum Qsupply
tcurr

, the fol-
lowing operations should be applied by the WRSNs. For each
grid gk, the sensor which locates in gk and is nearest to the cen-
ter of gk will be treated as the header sensor of gk, denoted by
gk·header. The mobile charger M broadcasts quorum construc-
tion request (QCReq) packet to the headers of grids belonging
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to the supply quorum Qsupply
tcurr

along the horizontal direction.
The QCReq packet can be expressed as [M, Lcharger

tcurr
, tcurr],

where M denotes that the packet is sent from the mobile
charger and Lcharger

tcurr
denotes the location of M at the current

time slot tcurr. As a result, the supply quorum Qsupply
tcurr

can be
formed. It is noted that only the grid headers gk·header should
cooperatively maintain the supply quorum Qsupply

tcurr
until they

receive a quorum cancelation request (QCCan) packet from
the mobile charger M. The QCCan packet can be expressed
as [M, tcurr]. This indicates that the mobile charger has arrived
another new grid and intends to construct a new supply quorum
Qsupply

tcurr
at time slot tcurr.

Assume that sensor bi is located at the center location
Lgrid

j (x, y) of grid gj. When sensor bi aims to be recharged
at time slot t2, it should query the location of M. To achieve
this, sensor bi will construct a demand quorum Qdemand

i,t2
. As

shown in Fig. 4, the formed quorum Qdemand
i,t2

contains the grids
marked with yellow ink. That is

Qdemand
i,t2 =

{
gk|Lgrid

k · x = Lgrid
j · x

Lgrid
k · y = Lgrid

j · y ± √
3ζ l

s.t. 0 ≤ Lgrid
k ·y ≤ √

W
where l = {0, 1, 2, . . .}

}
.

To construct the demand quorum Qdemand
i,t2

, sensor bi will
broadcast a mobile charger location request (MLReq) packet
to those grid headers belonging to its demand quorum Qdemand

i,t1
along the vertical direction. The MLReq packet can be
expressed as [bi, Lsensor

i , tnow], where bi denotes the sensor’s
ID, Lsensor

i denotes the location of sensor bi and tnow is the
current time.

Let gintsec
i,t2

denote the intersection grid of Qsupply
t2 and Qdemand

i,t2

at current time slot t2. We have gintsec
i,t2

= Qsupply
t2 ∩ Qdemand

i,t2
,

which is marked with pink ink as shown in Fig. 4.
The header in gintsec

i,t2
will be responsible to notify the sen-

sor bi about the receipt of MLReq packet by replying the
mobile charger location response (MLRes) packet using the
GPSR [2]. The content of MLRes packet can be expressed
as [M, Lcharger

tnow
, tnow], where M denotes the mobile charger,

Lcharger
tnow

denotes M’s location at time tnow.
According to the location update procedure, only a small

number of headers maintain the location of mobile charger.
Meanwhile, each sensor can acquire the current location
of the mobile charger M with a low communication cost.
Furthermore, each sensor can send a recharging request to M
quickly when it needs to be recharged.

C. Charger Reinforcement Learning

This section presents the reinforcement learning algorithm
for the mobile charger M to learn a recharging schedule,
aiming to maximize the surveillance quality provided by the
recharged sensors. Initially, charger M stays at the center of
the monitoring area. Once M receives a CReq packet from any
sensor bi, it activates the reinforcement learning and moves
to charge the requested sensor according to the Q-Table. Let

U denote the set of sensors which have already sent the
CReq packets to M. Charger M learns its recharging schedule
according to sensors in U.

Each sensor bi ∈ U will form an attraction force, aiming
to pull charger M to recharge bi itself. Furthermore, M learns
its recharging schedule based on the attraction generated by
all sensors bi ∈ U. The following presents the reinforcement
learning of M.

Definition: The reinforcement learning, denoted by RL(S, A,
AR, Q), for mobile charger M consists of four tuples, including
S, A, AR, and Q, where:

1) S = {s0, s1, . . . , sN} denotes the set of learning states
for charger M, where N is the number of grids in the
monitoring region;

2) A = {a0, a1, a2, . . . , a6} denotes the set of all possi-
ble actions that mobile charger M can take in a special
learning state sk ∈ SM . In detail, a0 denotes the charging
action while a1 to a6 denote the moving actions;

3) AR is the attraction reward matrix which is used to store
attraction generated by sensors in set U. Meanwhile, it
is used to evaluate how Good/Bad an action is for a
specific state;

4) Q is the Q-Learning function for evaluating Q(sk, al)

which predicts the best action to be executed for a
specific state.

The following presents the design of each element in RL.
Learning States S: The set S of states is the collection of

all possible states sk, 1 ≤ k ≤ N. That is, S={sk | 1 ≤ k ≤ N}.
The definition of the learning state is given as follows.

Definition of Learning State: The learning state is the loca-
tion of the mobile charger. More specially, charger M is said
to be in state sk ∈ S, where 1 ≤ k ≤ N, if it stays in grid gk.

The mobile charger M is said to be in state sk ∈ S, where
1 ≤ k ≤ N, if it stays in grid gk. When charger M stays in state
sk, it should check whether or not it should charge sensors in
grid gk. Let Bk = {bk

1, bk
2, . . . , bk|Bk|} denote the set of sensors

located in gk. If any sensor bk
j ∈ Bk has sent the CReq packet

to M, charger M should execute the charging task in state sk.
It is also said that charger M should take the action a0 in
state sk.

The following presents the charging criterion of the mobile
charger staying in state sk.

Charging Criterion: Charger M will execute the charging
task in state sk, only if the following criterion is satisfied:

∑

bk
j ∈Bk

λ
request, t
j ≥ 1. (16)

Actions A: There are seven actions in set A. That is,
A = {al| 0 ≤ l ≤ 6}. Action a0 indicates that mobile charger
M executes the charging task while action al ∈ A(l 
= 0) indi-
cates that mobile charger M moves to the neighboring grid
along direction κl.

Attraction Reward AR: The mobile charger M maintains an
attraction reward matrix which stores the attraction generated
by sensors bi ∈ U. Charger M can evaluate the reward of an
action in a specific state based on the attraction reward matrix.
The following presents the calculation of the attraction reward.
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Fig. 5. Example of attraction.

Fig. 6. Attraction reward matrix of Mj.

As shown in Fig. 5, assume that the charger M locates at the
center of grid gk at time t.

Consider a sensor bi ∈ U. Let
−→
f i,k denote the attraction

force generated by sensor bi ∈ U on charger M located in
grid gk. The direction of

−→
f i,k is from gk to bi. The magnitude

of
−→
f i,k can be calculated by

|−→f i,k| =
{

β∗ci
d(bi,gk)

, Lcharger
j,t = Lgrid

k
0, otherwise

(17)

where β is a coefficient to adjust the weights of independent
coverage ci and the distance between sensor bi and grid gk.

Considering that each sensor bi ∈ U generates its attraction
force. The total attraction on charger M in grid gk, denoted by−→
F k, can be calculated by

−→
F k =

∑

bi∈U

−→
f i,k. (18)

Fig. 5 gives an example of the calculation of total attraction−→
F k when set U has two sensors bi and bp. Assume that mobile
charger M is in grid gk. This also indicates that M is in state
sk ∈ S. The movement of M will be affected by

−→
F k. Since

M can move along one of six directions, the attraction of one
direction will be treated as the reward for M moving along
that direction. Let R(sk, al) denote the attraction reward that
M takes action al ∈ A in state sk ∈ S. The value of R(sk, al)

can be calculated by

R(sk, al) = |−→F k| ∗ cos <
−→
F k, al> (19)

where cos <
−→
F k, al> represents the cosine of the angle

between attraction
−→
F k and the direction κl of action al. As

shown in Fig. 6, M can obtain reward R(sk, a1) if it moves
along direction κ1. Based on (19), M can obtain its attrac-
tion reward matrix or AR in short, as shown in Fig. 6. The
attraction generated by sensors bi ∈ U will fade over the time.
Let 
 denote the attenuation rate of the attraction. It indicates
that each R(sk, al) in AR will reduce 
 per time slot until the
R(sk, al) is reduced to 0. Besides, AR will be updated when M

receives a new CReq packet. According to its AR, M obtains
the reward R(sk, al) when it takes action al in state sk.

The design of attraction reward indicates that sensors which
have larger coverage contribution and short distance from the
mobile charger will have higher priority to be charged. It is
conducive to achieve the objective represented by (5).

Q-Learning Function Q: Assume M stays in state sp after
executing action al in state sk. Then, the Q-Learning function
Q(sk, al) is given in

Q(sk, al) = Q(sk, al)

+ α ∗
[

R(sk, al) + γ ∗ max
aq∈A

Q(sp, aq) − Q(sk, al)

]
(20)

where α is the learning rate and γ is the discount factor
of Q-Learning. In addition, max

aq∈A
Q(sp, aq) indicates the max

value of Q in the next state sp. The expression [R(sk, al) +
γ ∗ max

aq∈A
Q(sp, aq)] represents the current reward obtained

by executing action al in state sk, including the immediate
and future parts. Furthermore, the expression [R(sk, al) + γ ∗
max
aq∈A

Q(sp, aq) − Q(sk, al)] calculates the difference between

the past experience and the current reward. In summary,
expression (20) calculates the new experience after executing
the action al in state sk.

Besides, the ε-greedy movement policy is employed by
mobile charger M to explore the probability θ(al|sk) of taking
action al when M is in state sk. The value of θ(al|sk) can be
calculated by

θ(al|sk) =
⎧
⎨

⎩

1 − ε + ε
|A| , al = arg max

aq∈A
Q

(
sk, aq

)

ε
|A| , al 
= arg max

aq∈A
Q

(
sk, aq

) (21)

where ε is a random action exploration probability of trade-
off between exploiting the current knowledge and exploring
the environment to select an action, and |A| is the number
of actions. Let σj,k denote a Boolean variable representing
whether or not M has ever taken action aj in state sk. That is

σj,k =
{

1, aj has been taken when M is in sk

0, otherwise.
(22)

Then, the value of ε can be calculated by

ε = 1 −
∑|A|

j=1

∑|S|
k=1 σj,k

|S| ∗ |A| . (23)

Herein, charger M can estimate the probability θ(al|sk) (0 ≤
l ≤ |A|, 1 ≤ k ≤ |S|) based on (21). Assume that action al has
the largest probability when M stays in state sk. That is

al = arg Max
ai∈A

θ(ai|sk). (24)

It means that charger M learns to take action al in state sk.
Furthermore, it indicates that M moves to the neighboring grid,
say gu, of gk along direction κl. If any sensor in U is located in
the new grid gu, it will charge all sensors in grid gu. Otherwise,
it learns to move to the next grid based on (21) and (24). After
learning for a while, M will learn a recharging schedule for
recharging sensors according to the received CReq packets and
finally can charge sensors according to the schedule.
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Here, the proposed RLR mechanism has been described.
In the CRL module, Q-Learning algorithm is applied to
help the charger learn a recharging schedule. Therefore, the
proposed RLR mechanism can be denoted as RLR-QL specifi-
cally. The state-action-reward-state-action (SARSA) is a more
conservative reinforcement learning algorithm compared with
Q-Learning. SARSA can play the role of QL in the CRL mod-
ule, which induces the proposed RLR-SARSA mechanism.
The effect of different reinforcement learning algorithms on
RLR will be discussed in Section V.

V. SIMULATION

This section investigates the performance improvement of
the proposed RLR by comparing with the existing Alg01 [13]
and FLCS [21]. The Alg01 aims to maximize the accumulative
charging utility gain by greedily reducing the charging path
length. The FLCS aims to effectively deal with the requested
sensors by applying fuzzy logic. Both of them did not consider
the coverage contribution of each sensor when making the deci-
sion of charging schedule. The following presents the simulation
environment, performance metrics, and the simulation results.

A. Simulation Setup

The simulation is executed on the MATLAB R2021a plat-
form. A WRSN consists of 200 sensors which are randomly
deployed in the 200 m * 200 m region. The sensing radius
of each sensor is set at 10 m. The battery capacity E of each
sensor is set at 10.8 kJ [18]. The residual energy of each sen-
sor is randomly set at a value between 0.1E to 1E before the
simulation starts. The initial recharging threshold ech

th,i of each
sensor is set at 0.2E. The energy consumption rate αdisch

i of
each sensor varies ranging from 0.1 to 0.2 J/s. The monitoring
region W is divided into multiple hexagonal grids. The length
of the hexagonal grid varies ranging from 10 and 20 m while
the charging radius of the mobile charger is set at a value
between 10 and 20 m. This guarantees the satisfaction of the
proposed Grid Constraint as shown in (6). The charging rate
of the mobile charger is set at 5 J/s [21]. The moving speed
and the moving cost of the mobile charger are set at 1 m/s and
50 J/m, respectively. The learning rate α is set at 1 and the
value of discount factor γ varies ranging between 0.1 and 1.
The initial values of elements in the Q-Table are zero. The
simulation parameters are listed in Table I.

B. Performance Metrics

The performance metrics mainly include the average wait-
ing time, the EUE, the number of sleeping sensors and the
accumulated coverage contribution of all sensors.

1) Average Waiting Time: Recall that notation Twait
i,t

denotes the average waiting time of sensor bi at the current
time t and it can be calculated based on (14). Then, the aver-
age waiting time of all sensors deployed in the network at
current time t, denoted by Twait

t , can be calculated by

Twait
t =

∑|B|
i=1 Twait

i,t

|B| . (25)

TABLE I
SIMULATION PARAMETERS

Fig. 7. Network snapshot after it operates 3600 s.

2) EUE: The EUE of the mobile charger is an evaluation
indicator of the charging algorithm. Let Ech and Etrdenote
the energies of mobile charger consumed for recharging or
moving, respectively. That is

EUE = Ech

Ech + Etr
. (26)

The EUE reflects the ratio of the energy of the mobile charger
consumed for recharging sensors. An inefficient schedule of
moving along a long path will result in a small value of EUE.
On the contrary, a large EUE value indicates that the recharg-
ing schedule achieves a large ratio of energy consumption for
recharging the sensors, instead of movement.

3) Accumulated Coverage Ratio: Recall the objective func-
tion given in (5) which aims to maximize the coverage contri-
bution of all sensors. The accumulated coverage ratio, denoted
by ACR, is further defined to evaluate the network coverage
achieved by an algorithm. The ACR can be expressed by

ACR =
∑

τj∈T (W−Closs
j )

∑
τj∈T (W)

. (27)

C. Simulation Results

Figs. 7 and 8 depict the network snapshot and the contents
of Q-Table, respectively, after the network operates for 3600 s.
The grid length ζ is set to 20 m and the number of sensors
is set to 200. The mobile charger is initially located at the
center of the grid g21 (i.e., s21). It periodically constructs a
supply quorum to update its location to the sensors. As shown
in Fig. 7, the initial energies of sensors bi and bj are set
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Fig. 8. Snapshot of the Q-Table.

Fig. 9. Effect of learning rate on exploration probability.

below 0.2E. they should first query the location of the mobile
charger based on the CLP procedure and then send the recharg-
ing requests to the mobile charger. On receiving the requests,
the mobile charger applies the reinforcement learning RL(S,
A, AR, Q) and selects the action a4 in state s21 based on (24).
Then, the mobile charger moves from grid g21 to grid g22.
Therefore, it switches from state s21 to state s22 accordingly
and updates the value of Q(s21, a4) to 36.25, as shown in
Fig. 8. As long as the mobile charger decides to move to a
new grid, the Q-Table is also updated. Let πop=[t1, t2] denote
that the mobile charger executes the operation op during the
period from t1 to t2. As shown in Fig. 7, a time line is given
at the bottom to show the duration of each action taken by
the mobile charger M. The mobile charger starts moving and
finally arrives grid g22 during πmove = [0, 34]. According to
the Charging Criterion, the mobile charger charges all sensors
located in the grid g16 during time period πcharge=[34, 1781].
Afterward, it moves to grid g24 passing through g23 during
πmove=[1781, 1815]. Finally, it charges all sensors located in
grid g24 during πcharge= [1815,3600].

The learning rate α affects the learning speed of the
proposed RLR mechanism. The proposed RLR aims to learn
a charging schedule by exploring state–action space in the
network. During the experiment, it is found that when the
learning rate α is set at a small value, the charger will be
easily trapped in the grids that have been charged due to the
experiences preserved in the Q-Table. It means that it could
not to exploring more states and actions. Therefore, to make
the charger get rid of the influence of local optimal solu-
tion, the learning rate is set at a larger value. Recall (23),
the exploration probability ε is determined by the number of
the explored states and actions. Furthermore, a smaller value
of ε means that the charger has explored a larger number of
states and actions. Fig. 9 shows the effect of learning rate α

on exploration probability ε. Considering the boundary effect,
ε is approximately equal to 0.18 when the mobile charger has

Fig. 10. Comparison of average waiting time for different γ .

Fig. 11. EUE comparison of mobile charger for different γ .

explored all available states and actions. As shown in Fig. 9,
the larger the value of α, the faster the value of ε decreases,
which means the faster the chargers can explore. In addition,
when the charger does not fully explore all available states
and actions, the learning is not sufficient, which will lead to
the underfitting problem. Therefore, to avoid the underfitting
problem, the algorithm should at least learn in ε approxima-
tion 0.18. To better discuss the other parameters, the parameter
α will be set at 1 in the following experiments.

The parameter γ reflects the tradeoff between the immedi-
ate attraction reward and the accumulated experiences, which
highly impact the waiting time, the energy usage efficiency
as well as the network coverage. Figs. 10–12 aim to find an
appropriate setting value of γ for the later experimental stud-
ies. Fig. 10 investigates the average waiting time of all sensors
during the elapsed time under different discount factor γ . As
shown in Fig. 10, there is a common trend that the average
waiting time increases first, then decreases and finally almost
levels off with the elapsed time. This occurs because a small
number of sensors needs to be recharged at the beginning of
the simulation and the mobile charger can quickly learn to
charge those requested sensors. However, as time goes by,
more and more sensors need to be charged and the mobile
charger needs more time to accumulate the experiences of
energy dissipation trend. This results in an increase in aver-
age waiting time. Furthermore, when the mobile charger learns
enough experiences, it can make a better charging schedule,
leading to a decrease in average waiting time. Fig. 10 shows
that reinforcement learning can reduce the average waiting
time. Finally, the mobile charger achieves a stable curve of
learning experiences maintained in Q-Table. In comparison,
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(a) (b)

(c) (d)

Fig. 12. Coverage ratio and the number of sleeping sensors under different
γ . (a) γ = 0.3. (b) γ = 0.5. (c) γ = 0.7. (d) γ = 0.9.

when γ is set at 0.5, the convergence of the average waiting
time is fastest and the values of average waiting time tend to
be smaller. This occurs because of several reasons. First, if γ

is set at a small value, the scheduling decision depends more
on the immediate reward when deciding an action. This causes
that the mobile charger has a smaller weight on the accumu-
lated experience and hence decreases the learning speed. On
the contrary, if γ is set at a large value, the movement of the
mobile charger is severely influenced by experience, which
indicates that the mobile charger is more likely to charge sen-
sors that have been charged before, leading to a longer waiting
time of those sensors that have not been charged.

Fig. 11 further presents the relation of EUE and the elapsed
time by varying the discount factor γ under the same parame-
ter settings of Fig. 10. As shown in Fig. 11, there is a common
trend that the EUE rises sharply, then falls sharply, before
leveling off. In the initial time period, the mobile charger
is located at the center location of the region. The aver-
age distance between the mobile charger and the requested
sensors is short. Therefore, the ratio of energy consumption
for movement is small. However, when the mobile charger
moves to the boundary region, the average distance between
the requested sensors and the mobile charger is relatively large,
as compared with the initial time period. As a result, the EUE
drops sharply. Finally, the mobile charger learns the experi-
ence of the energy dissipation of the WSNs from the Q-Table
and makes better schedules which discard the worst situations
including long path but small gains in terms of the coverage.
Therefore, the EUE is maintained with a stable curve. In com-
parison, the value of EUE is higher when γ is set at 0.5. It
takes advantage of considering both the reward matrix and the
Q-Table. The reward matrix reflects the current benefit while
the Q-Table reflects benefits learned from the past experiences.

Fig. 12 compares the coverage ratios and the numbers
of sleeping sensors over time, for different γ values.
Fig. 12(a)–(d) depicts the results of γ values 0.3, 0.5, 0.7, and
0.9, respectively. The coverage ratio is defined as the ratio of

Fig. 13. Comparison of average waiting time at different grid lengths.

Fig. 14. EUE comparison of mobile charger at different grid lengths.

the size of the coverage area contributed by all working sensors
to the size of the monitoring area. In comparison, the setting
of γ = 0.5 outperforms the other settings in terms of coverage
ratio and the number of sleeping sensors. More specifically,
the coverage ratio with γ = 0.5 is generally higher than those
with other settings while the number of sleeping sensors with
γ = 0.5 is generally smaller than those with other settings.
It occurs because that the mobile charger takes the advantage
of both the immediate attraction reward and the accumulated
experiences. Based on the results of experimental studies as
shown in Figs. 10–12, the parameter γ will be set at 0.5 in
the following experiments.

Since the size of the monitoring area is fixed, the value of
the grid length ζ determines the number of the grids as well
as the number of states. The number of states highly impacts
the traveling path of the mobile charger and the refinement of
accumulated experiences, which further impacts the waiting
time, energy usage efficiency as well as network coverage.
Figs. 13–15 aim to find an appropriate setting value of ζ for
the later experimental studies.

Fig. 13 compares the trend of the average waiting time for
different grid lengths. The number of deployed sensors is set
at 250. The charging radius of the mobile charger is set to
the value as long as the grid length, in order to guarantee the
satisfaction of the proposed Grid Constraint as shown in (6).
Similar to Fig. 10, there is a common trend that the average
waiting time increases first, then decreases and finally almost
levels off with the elapsed time. Finally, the mobile charger
converges with a stable curve due to the learning experiences
maintained in Q-Table. In comparison, the values of the aver-
age waiting time with ζ = 20 are lower than those with other
settings after the trends level off. It occurs because that the
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(a) (b)

(c) (d)

Fig. 15. Coverage ratio and the number of sleeping sensors under different
grid lengths. (a) ζ = 10. (b) ζ = 14. (c) ζ = 16. (d) ζ = 20.

larger the value of the grid length, the larger the number of
sensors in a grid. This indicates that the mobile charger can
charge a larger number of sensors simultaneously, reducing
the average waiting time.

Fig. 14 compares the trends of the EUE for different grid
lengths. The parameter settings are identical to those of
Fig. 13. As shown in Fig. 14, the settings of ζ = 20 and
ζ = 18 outperform the other settings in terms of the EUE.
It occurs because that the mobile charger can simultaneously
charge a larger number of sensors when the grid length has a
big value. It further indicates that the gains of sensor energy
recharged from the mobile charger are increased, when ζ is
set at a large value. This leads to the increase of the EUE.

Fig. 15 shows the impact of the grid length ζ on the cover-
age ratio and the number of sleeping sensors under the same
parameter settings of Figs. 13 and 14. In general, the setting of
ζ = 20 outperforms the other settings in terms of the coverage
ratio and the number of sleeping sensors. It occurs because of
several reasons. One major reason is the increased number of
recharge sensors. The other reason is that the mobile charger
can quickly learn the trend of energy consumption of the sen-
sors when the grid size is large. Since the average waiting
time of all sensors is generally reduced, the number of sleep-
ing sensors drops accordingly. To sum up, the grid length is
suggested to set at a large value on the premise of the Grid
Constraint and will be set at 20 in the following experiments.

Fig. 16 observes the effect of the sensor density on EUE.
The number of deployed sensors varies from 200 to 400. In
general, the higher the sensor density, the higher the EUE. It
occurs because the charger can simultaneously charge more
sensors in one grid with higher density. However, it can be
observed that the EUE increases with the elapsed time when
the number of deployed sensors is set at 350 or 400, as com-
pared with other settings. This is because that a higher density
will lead to the havey network load. Then, the energy con-
sumption rates of the sensors increase quickly. Consequently,
after learning for a period, the charger will work around a

Fig. 16. EUE under a different number of deployed sensors.

Fig. 17. Comparisons of the four mechanisms in terms of the average waiting
time.

smaller region. It indicates that the charger can charge more
sensors with less movement.

Fig. 17 further compares the proposed RLR_QL and
RLR_SARSA against the existing Alg01 [13] and FLCS [21]
in terms of the waiting time. As shown in Fig. 17, both
the average waiting times of proposed RLR-QL and RLR-
SARSA increase slightly and then decrease before leveling
off. However, the average waiting times of FLCS and Alg01
always increase with the elapsed time. At the beginning of the
simulation, the proposed RLR-QL and RLR-SARSA need to
learn the experience of the energy dissipation trend, leading
to the increase of the average waiting time. After learning for
a while, the mobile charger has accumulated enough expe-
riences, which likely guides it moving along the direction
where some sensors have already sent the recharging requests
and most of them are with large independent coverage, as
compared with the requested sensors located in the other direc-
tion. The mobile charger learns experiences from the Q-Table
and, thus, achieves a shorter average waiting time, as com-
pared with the existing FLCS and Alg01. In addition, the
RLR-QL has a faster downward trend than RLR-SARSA. It
occurs because that the SARSA is more conservative than
Q-Learning, leading to a lower rate of convergence. In com-
parison, the existing FLCS and A lg01 determine the charging
schedule only according to the recently received charging
requests, without learning from experiences. As a result, the
number of sensors needed to be charged is increased with
the elapsed time, and hence the average waiting time is
increased.

Fig. 18 further compares the four mechanisms in terms of
the EUE of the mobile charger. As shown in Fig. 18, there is
a common trend that the EUE of the mobile charger decreases
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Fig. 18. Comparisons of the four mechanisms in terms of EUE.

Fig. 19. Comparisons of the four mechanisms in terms of the number of
sleeping sensors.

along with the elapsed time. It occurs because that the aver-
age path length for recharging the sensors is increased with
the elapsed time, resulting in the decrease of the EUE. In com-
parison, the proposed RLR-QL and RLR-SARSA outperform
the existing FLCM and Alg01. This occurs because that the
proposed mechanisms learn the energy dissipation trend of the
network. This indicates that the mobile charger learns to move
to the areas where a lot of sensors are needed to be charged. It
further indicates that the mobile charger can charge more sen-
sors by traveling a shorter distance, resulting in a slow descent
and then a stable tendency for the EUE.

Fig. 19 compares the four mechanisms in terms of the num-
ber of sleeping sensors. The numbers of sleeping sensors of
the proposed RLR-QL and RLR-SARSA grow rapidly and
then decrease before leveling off along with the elapsed time.
It occurs because the proposed RLR-QL and RLR-SARSA
still need to learn the appropriate states and the corresponding
actions, without a rich experience, at the beginning of the sim-
ulation, leading to a large number of sleeping sensors. Then,
the learning of the mobile charger converges and, thus, the
number of sleeping sensors levels off. In general, the numbers
of sleeping sensors of the existing FLCS and Alg01 increase
along with the elapsed time. In comparison, the numbers of
sleeping sensors of the proposed RLR-QL and RLR-SARSA
are larger than those of the existing FLCS and Alg01 during
the simulation time. It occurs because the proposed mecha-
nism further considers the independent coverage of sensors
when making the decision of the charging schedule. The sen-
sors which have small or even no independent coverage might
be ignored by the mobile charger. In contrast, the existing
FLCS and Alg01 will try to charge all sensors which have

Fig. 20. Comparisons of the four mechanisms in terms of ACR.

sent the charging requests. However, the proposed RLR-QL
and RLR-SARSA outperform the existing works in terms of
coverage, which will be depicted in Fig. 20 in advance.

Fig. 20 further compares the four mechanisms in terms of
ACR along with the elapsed time. As shown in Fig. 20, the
ACRs of the proposed RLR-QL and RLR-SARSA decrease
slightly, then increase before leveling off while the ACRs
of the existing FLCS and Alg01 decrease rapidly with the
elapsed time. Recall the results obtained in Fig. 19. Though
the proposed RLR-QL and RLR-SARSA have a larger number
of sleeping sensors, they achieve higher coverage contribution,
as compared with the existing FLCS and Alg01. It demon-
strates that the proposed charging mechanisms achieve better
performance in terms of coverage ratio during a given time
period T.

VI. CONCLUSION

This article proposes a novel reinforcement learning
approach for the mobile charger, named RLR, aiming to
maximize the coverage contribution of the deployed sensors in
a given WRSN. To achieve this, the mobile charger employs
reinforcement learning to learn the energy dissipation trend
of the network, the recharging cost as well as the coverage
benefit. The attraction reward is designed by considering both
the independent coverages of requested sensors and the dis-
tances between the mobile charger and requested sensors. As
a result, the mobile charger tends to move to and recharge the
requested sensors which have a short distance from the charger
and can contribute large independent coverages, as compared
with the other requested sensors. Extensive experiments show
that the proposed RLR outperforms the compared algorithms
in terms of charging waiting time of sensors, the energy usage
efficiency of the mobile charger, as well as the coverage of the
given sensor network. Our future work will further discuss the
cooperation issue of multiple mobile chargers in a large-scale
network.
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