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RS-STQ: Recharge Scheduling Algorithm for
Maximizing Spatial and Temporal Data Accuracy

Bhargavi Dande , Chih-Yung Chang , Member, IEEE, Chin-Hwa Kuo , and Diptendu Sinha Roy

Abstract—With the help of wireless power transfer (WPT)
technology, the mobile charger (MC) can transfer energy to
the sensor nodes. This technology provides a new solution to
prolong the lifetime of wireless rechargeable sensor networks
(WRSNs). However, most of the existing studies focused on
improving the charging efficiency or minimizing the latency,
while very few studies improved the data accuracy of the
network. This article proposes an efficient-energy recharging
schedule for MC, aiming to maximize the data accuracy of
the given network. Initially, the data accuracy of each sensor
is measured by considering the spatial and temporal quali-
ties. The proposed recharging schedule considers the spatial
quality contribution of each recharging requested sensor.
In addition, an energy management strategy is proposed for each requested sensor to locally adjust the sensing time
sequence, aiming to improve the temporal quality. Each sensor might have a different energy consumption rate; therefore,
this study also formulates an adaptive recharging request threshold for the sensor nodes, which is suitable for real
applications. The experimental study shows that the proposed algorithm outperforms the literature in terms of data
accuracy and recharged sensor’s spatial quality contributions.

Index Terms— Data accuracy, mobile charger (MC), recharge scheduling, wireless sensor networks (WSNs).

NOMENCLATURE
Emax

S Maximum battery capacity.
edisch

i Discharging rate of the sensor si .
E rem

i, j Remaining energy of the sensor si at t j .
λp,t Spatial–temporal quality of point p at time slot

t .

echarge
M Recharging rate of MC.

ereq
th,i Recharging request threshold of the sensor si .

emin Sleep threshold.
τ

crg
k Time duration required to fully recharge the sen-

sor ŝk .
τmv

k Time duration required to move from sink/ŝk−1
to ŝk .

℘current Current path of MC.
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At
i Spatial quality contributed by the sensor s̃i at time

t .
Sξ

best Sensor with the largest data accuracy benefit in
ξ .

S℘
worst Sensor with the least data accuracy benefit in

℘current.
T wait

i Waiting time of the sensor ŝi .
Sfreq

i Sensing rate frequency of the sensor ŝi .
tnew,i
u Adjusted sensing time sequence of ŝu .

I. INTRODUCTION

W IRELESS sensor networks (WSNs) consist of sensors,
which have been widely used in potential applications,

such as health care [1], smart homes [2], agriculture [3],
traffic management [4], environment monitoring [5], indus-
trial manufacturing [6], and mobile sensor networks [7] and
[8]. Although the sensors were used in many applications,
their finite energy is a big issue in WSN. In the literature,
many algorithms aimed to solve the energy-constrained issue
in WSN [9], [10], [11], [12]. Wireless rechargeable sensor
networks (WRSNs) allow mobile entities called the mobile
charger (MC) to traverse the network for replenishing the
sensors with insufficient energy. The sensors are equipped with
receiver devices and receive the energy transferred by the MC.

The literature can be categorized into two classes: offline
recharging approaches [13], [14], [15], [16], [17], [18], [19],
[20], [21] and online recharging approaches [22], [23], [24],
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Fig. 1. Spatial and temporal distances will impact the data accuracy in
WSNs.

[25], [26], [27], [28], [29], [30], [31], [32]. The offline
recharging approaches [13], [14], [15], [16], [17], [18], [19],
[20], [21], recharge the sensors in a periodical manner. These
approaches ignored the sudden changes in the network. That
is to say, the predetermined charging schedule of MC is not
optimal since it cannot adapt to applications with the high
energy demand of sensors. To solve the issues faced by offline
recharging approaches, the online recharging approaches [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32] were
proposed. They allowed the sensors to send the recharg-
ing requests. Then, the MC will make the decision based
on the real-time information of the requested sensors. The
online approaches can adapt to networks with different energy
requirements. The most important issue in online recharging
approaches is to select the best charging candidate among the
sensors that have sent the charging requests. There have been
several online charging approaches proposed in recent years.
The GSA-based mechanism [30] adopted the gravitational
search algorithm and fitness function to select the charging
candidate, while MERSH [31] considered the charging latency
to recharge the sensors. Another study, ETLBO [32] proposed
an algorithm based on the teaching-learning-based optimiza-
tion method. Different from the related studies, this article
aims to propose the recharging approach by considering the
spatial quality contribution and adjusting the sensing time
sequence of the requested sensors, aiming to improve the data
accuracy of the network.

WSN consists of tiny sensors, which sense data periodically
according to their schedule and forward it to the sink. In WSN,
if any user sent a data query, the sink would check its database
and report the data according to the data query of the user.
The data query consists of data-centric operations, such as
information about the location and temperature. As shown in
Fig. 1, assume that the user sent a data query 1 “what is
the temperature in location X at time 10:45 A.M.?” to the
sink. The sink will respond to the temperature according to
its database. As shown in Fig. 1, there is no sensor deployed
in location X . Therefore, the sensing data of the nearest

sensor are used to represent the data of location X . As shown
in Fig. 1, sensors s j and sk are closer to the location X .
Compared to the sensor sk , we have

(
X, s j

)
< d (X, sk).

Therefore, the sink will report the sensing data collected by the
sensor s j at 10:45 A.M. to the data query 1, resulting in better
data accuracy. This implies that the data accuracy reported to
the user is decreased with the spatial distance between the
query location and the closest sensor location.

On the other hand, assume there is another data query 2
“what is the temperature in location Y at time 10:35 A.M.?”
to the sink. As shown in Fig. 1, location Y is in the sensing
range of the sensor si . Therefore, the sensing data of the
sensor si are used to respond to the data query 2. Assume
sensor si scheduled sensing time slots at 10:30 A.M., 10:45
A.M., and 11:00 A.M., as shown in the bottom part of Fig. 1.
Since the sensor si is not sensing at 10:35 A.M., the sink
should report the closest sensing time information to the sink.
As shown in Fig. 1, the sink will report the sensing data at
10:30 A.M. because it is the closest sensing time compared to
10:45 A.M. If the sink reports the sensing data of 10:45 A.M.,
the reported data accuracy is very low. According to the above
two examples, if the spatial and temporal distances are larger,
the reported data accuracy will be lower, which degrades the
data accuracy of the network.

To improve the data accuracy of the network, this article
proposed a Recharge Scheduling Algorithm for Maximizing
Spatial and Temporal Data Accuracy (RS-STQ). The proposed
RS-STQ can better adapt to the dynamic energy consumption
of sensors in WRSNs. All the recharging requests are stored in
the service pool of the MC. This article proposed a recharging
schedule for MC based on the spatial quality contribution of
each requested sensor, aiming to improve the data accuracy of
the network. During the network initialization, the MC con-
structs a Hamiltonian path by considering the set of recharging
candidates. When each sensor on the path is recharged, the
MC checks its service pool to determine whether any sensor
closer to its path has requested a recharging request. The MC
will include the newly requested sensor if the spatial quality
contribution is higher than the sensors on the path. In addition,
the energy management strategy for each sensor is proposed,
aiming to adjust the sensing time sequence of each sensor
for maximizing the data accuracy. The contributions of the
proposed RS-STQ are itemized in the following.

A. Recharging Request Threshold Value of Each Sensor
Is Adaptively Determined

In the proposed RS-STQ algorithm, each sensor determines
its recharging request threshold value by considering its dis-
charging rate and the total time required by the MC to recharge
it. Therefore, each sensor can better utilize the energy of MC
for recharging.

B. Dynamic Recharging Schedule
The recharging schedule of the RS-STQ algorithm is

dynamically adjusted. This study considered the data accuracy
benefit of the recharging requested sensors. Therefore, all
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the requested sensors whose data accuracy is higher will
be recharged with priority. This strategy improves the data
accuracy of the network.

C. Maximizing the Data Accuracy of the Network Based
on the Spatial and Temporal Qualities

In the proposed RS-STQ algorithm, the data accuracy is
measured from the aspects of space and time, which is differ-
ent from the existing studies [35], [36]. The spatial quality of
the sensors is considered to construct the recharging schedule,
while the sensing time sequence of the sensors is adjusted to
improve the temporal quality, aiming to maximize the data
accuracy.

The remainder of this article is organized as follows. The
offline and online recharging approaches are reviewed in
Section II. Section III details the considered environment and
objective function. Section IV details the RS-STQ algorithm.
Section V compares the experimental results, while the con-
clusion is presented in Section VI.

II. RELATED WORKS

The existing studies related to recharging approaches are
reviewed in this section. These studies were partitioned into
two types: offline [13], [14], [15], [16], [17], [18], [19], [20],
[21] and online [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32] recharging approaches.

A. Offline Recharging Approaches
In these types of approaches, the MC traverses in the prede-

fined trajectory to finish its recharging tasks. These approaches
mainly focused on planning the optimal path for the MC. The
study [13] proposed an f -approximate scheduling scheme by
considering the energy consumption of nodes. Another study
[14] developed a periodic charging schedule by considering
the relationship between the charging cycle of the MC and the
lifetime of sensor nodes. Chen et al. [15] focused on designing
the path of the MC and collaboration between them to reduce
the number of MCs.

Different from the abovementioned studies, another
study [16] developed a partial energy charging model. In addi-
tion, the shortest charging path for MC is constructed by
ensuring that the sensor lifetime is maximized. To minimize
the path length of the MC, another study [17] assumed that
all the sensors that fall in the transmission range of the MC
could be recharged simultaneously. The study [18] constructed
the path of the MC by assuming that the energy consumption
rate of sensors is constant, which is not suitable for many real
applications.

Another study [19] proposed a periodic charging scheme
based on a genetic algorithm to minimize the dead nodes.
This study assumed that sensors are partially recharged in
each charging round. However, partial recharging schemes
lead to longer path length, which consumes a lot of energy
for the movement of the MC. Another study [20] partitioned
the grids and considered the weight of each grid to construct
the recharging path. In addition, cost-effective and fairness

recharging approaches were proposed. The study [21] pro-
posed an intelligent charging scheme to optimize the system
utility, aimed to improve data accuracy. This study considered
the impact of sensing nodes with different data accuracy.
If multiple sensing nodes cover the same area, the system
will only select the data with the highest quality value to
avoid repeated calculations for the utility. However, in this
study, the spatial and temporal qualities of the sensors were
ignored. In studies [13], [14], [15], [16], [17], [18], [19], [20],
and [21], the schedule of the MC is static, which ignored the
new recharging requests from the sensors. Although the new
requested sensors were closer to the MC location, it will not
consider those sensor requests. They will be visited in the next
cycle, which leads to a longer path.

B. Online Recharging Approaches
In these approaches, the MC timely considers the recharging

requests of the sensors. The study [22] developed an algorithm
based on the remaining energy and energy consumption rate
of sensors. The node insertion and deletion algorithms were
developed to remove the low-efficient nodes, respectively.

Another study [23] applied the game theory in WRSNs.
In this study, the MC decided the charging sequence based on
the location and charging deadlines of the charging requested
nodes. However, data accuracy is overlooked in this study.
In the study [24], the sensor nodes were prioritized and
served based on their contribution to the monitoring tasks
and deleted the sensor nodes, which degrades the charging
performance. However, the partial charging schemes can lead
to the ping-pong movement of the MC.

The study [25] designed an adaptive threshold value based
on the maximum traveling time of the MC and the consump-
tion rate of sensors. Tomar et al. [26] proposed an architecture
for the sensor nodes based on fuzzy logic. This study con-
sidered the remaining energy of sensor nodes, node density,
and distance to the MC to make the recharge scheduling
decision. However, it predefined the threshold value of each
sensor. To overcome this issue, another study [27] designed the
threshold value by considering the energy consumption rate,
average Euclidean distance between any two nodes to calculate
the moving distance of the MC, and the average charging time.
This study focused on multinode energy transfer by consid-
ering the multiple MCs. Initially, the network is partitioned
and distributed to the MCs to balance their workloads. When
the MC received the charging requests from the sensors of its
corresponding region, fuzzy logic is adopted to determine the
schedule of the MC.

The study [28] adopted a reinforcement learning technique
to construct the path of the MC. In addition, this study focused
on charging the sensors, aiming to maximize the sum of charg-
ing rewards collected by the MC. Kumar and Mukherjee [29]
considered the energy depletion of MCs during their charging
tours and proposed a vehicle-assisted framework for charging
the sensors in WRSNs. The study [30] proposed a linear
programming formulation for scheduling the MC. Another
study [31] proposed an energy replenishment scheme, aiming
to improve the charging performance in WRSNs. This study
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TABLE I
COMPARISON OF THE PROPOSED AND RELATED WORKS

adjusted the charging duration of sensors. Zhao et al. [32] pro-
posed charging scheduling by considering the service cost and
energy replenishment utility, aiming to improve the charging
efficiency. Although the studies [22], [23], [24], [25], [26],
[27], [28], [29], [30], [31], and [32] dynamically constructed
the recharging path of the MC, none of them considered the
data accuracy of the network.

Table I gives the comparison between proposed and related
works. In the proposed RS-STQ algorithm, by considering
the spatial quality contribution of the requested sensors, the
insertion and deletion conditions are proposed for reconstruct-
ing the recharging path dynamically. In addition, most of
the studies [22], [23], [24], [26], [28], [29], [30], [31], [32]
assumed that the threshold value is fixed. A recharging request
threshold, which is too loose or tight, may have negative
effects on the WRSNs [33]. In the proposed RS-STQ algo-
rithm, each sensor determines an appropriate threshold value
locally by considering its discharging rate and the total time
required for the MC to move and recharge all the requested
sensors in the service pool.

III. SYSTEM MODEL AND PROBLEM STATEMENT

This section first introduces the environment of the consid-
ered WRSNs. Then, the problem statement of this study is
discussed.

A. Network Environment
Let R denote the considered monitoring region. This article

assumes that there are n static sensors, represented by S = {s1,
s2, . . . , sn}, which have been randomly deployed in R. The
sensor is responsible for collecting data and transmitting its
readings to the static sink via multihop forwarding. The sens-
ing and communication operations executed by each sensor
consume energy from the battery. When the battery power is
lower than a certain level, the sensor needs to be recharged.
There is one MC in the network to recharge the sensor nodes.

Fig. 2. Considered network environment.

The stationary sink will support the energy of MC, which is
initially located at the sink location. When the MC receives
the charging requests from sensors, it will move from the sink
to the requested sensors for providing the charging service
and, finally, return to the sink. Since the MC might receive
many requests from the sensors and the recharging task is
time-consuming, some requested sensors might not be timely
recharged. Therefore, some sensors may enter into a sleeping
state due to energy exhaustion, resulting in data accuracy
loss (DAL). To obtain the maximal data accuracy, this article
aims to develop an efficient energy recharging schedule for
MC and an energy management strategy for each sensor. The
developed recharging schedule for the MC aims to maximize
the working sensors, while the energy management strategy
aims to adjust the sensing rate of each sensor for maximizing
the data accuracy.

The lifetime of each sensor depends on various parameters,
such as the time, when the sensor sends the requests and
the amount of recharged energy. These parameters related
to the recharging model can determine how well the sen-
sors are recharged by the MC. To completely describe the
recharging-related parameters and exhibit their relations, the
sensor recharging model is presented in Section II-B.

B. Sensor Recharging Model
The battery capacity of each sensor is denoted by Emax

S .
Since the forwarding load and sensing rate of each sensor
are different, each sensor si has its discharging rate edisch

i .
In this article, there are two threshold values for each sensor,
including the recharging request threshold and sleep threshold,
which are denoted by ereq

th,i and emin, respectively. If the
remaining energy of the sensor si reaches the threshold value
ereq

th,i , the sensor si sends a recharging request to the sink
node. Whenever the MC finishes recharging one sensor, it will
update its service pool by querying the sink node. The other
threshold value emin is predefined for all the sensors, and it is
the minimum energy required for basic operations. Therefore,
if the remaining energy of the sensor si reaches the threshold
value emin, the sensor si will switch to a sleep state. The MC
maintains the charging service pool denoted by ξ , and all the
requests are stored in ξ . The considered network scenario is
depicted in Fig. 2.
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Let T = {t1, t2, . . . , t j , . . . , tm} denote the total time for
measuring the data accuracy of region R. Let rcrg denote the
recharging radius of each sensor, which is the same for all
sensors. Let lM and li denote the current locations of MC
and sensor si , respectively. Let d(li , lM ) denote the distance
between si and MC. Let ζ

crg
i, j be a Boolean variable indicating

whether MC is located in the recharging range of the sensor
si at time slot t j . The value of ζ

crg
i, j can be calculated as shown

in the following equation:

ζ
crg
i, j =

{
1, d(li , lM ) ≤ rcrg

0, d(li , lM ) > rcrg.
(1)

Let Ecrg
i denote the energy of the sensor si charged by

MC at a one-time slot. The energy of sensors is evaluated
in voltage. Let E tot_crg

i be the total charged energy of the
sensor si . The value of E tot_crg

i can be derived by the following
equation:

E tot_crg
i =

tm∑
t1

ζ
crg
i, j × Ecrg

i ∀t j ∈ T, si ∈ S. (2)

Let μtime
i,t denote the Boolean variable representing whether

or not the sensor si is sensing at the current time slot t . That
is,

μtime
i,t =

{
1, if sensor si is sensing at time t

0, otherwise.
(3)

Let Econ
i, j represent the energy consumed by the sensor si at

time slot t j for executing both the sensing and communication
tasks. Let E rem

i, j denote the remaining energy of the sensor si

at time slot t j . The value of E rem
i, j can be evaluated, as shown

in the following equation:
E rem

i, j = E rem
i, j−1 + Ecrg

i, j ∗ ζ
crg
i, j − Econ

i, j ∗ μtime
i,t . (4)

After the calculation of recharged energy and the remaining
energy of each sensor, the data accuracy provided by each sen-
sor should be determined. The data accuracy of the monitoring
region consists of both space and time qualities. To determine
the data accuracy of each space point at a certain time slot,
the data accuracy model is presented in Section II-C.

C. Data Accuracy Model
The data accuracy of the network depends on the quality of

sensing data of all the sensors in the network. Every data have
its quality. The data accuracy is measured with accuracy. The
accuracy is the difference between the reporting data to the
actual data. The time of reporting data may not be the time
of sensing data. Therefore, the word “how well” means the
accuracy of the reporting data to the user query. That is, the
data accuracy is measured by how accurately the sensing data
can be represented at each point of space and time.

The data accuracy will be measured from the aspects of
space and time. The following explains the spatial quality
calculations. Assume that there is a user who wants to query
the temperature of location “y” at time t . Assume that the
closest sensor to location “y” is deployed at location “x.”
Assume that the sensor performs a sensing operation and

detects the temperature of 37 ◦C at the time t . It is appreciated
to use temperature = 37 ◦C to estimate the temperature of the
location “y.” Since the distance of “x” and “y” is small,
the reporting temperature of location “x” is much close to
the actual temperature of location “y.” Therefore, the data
accuracy of the location “y” is high. However, if location “x”
is far from location “y,” the spatial quality is low since the
difference between the reporting temperature and the actual
temperature is big. In case there is no sensor deployed at
a space point “y,” the data accuracy of “y” depends on the
distance between “y” and “x,” where “x” is the sensor location
closest to “y.” From the explanation of the abovementioned
two cases, it indicates that the data accuracy is impacted by
the spatial quality.

In addition, the data accuracy is also impacted by the
temporal quality. The WSN will report the data to the user
according to the user query. Assume that there is a user query
about the temperature on Tuesday at 9:00 A.M. However, the
sensor did not sense at 9:00 A.M., and its last sensing time was
8:00 A.M. The WSN will report that the temperature is 33 ◦C,
but the actual temperature is 35 ◦C at that time (8:00 A.M.).
Therefore, the data loss is 2 ◦C. The data accuracy is defined
as the reciprocal of data loss. That is to say, if the data loss
increases, the data accuracy will be decreased. Data accuracy
depends on the accuracy of the reporting data (temperature)
to the user query at a given time t . If the WSN reports the
temperature at time t1 to the user query, there is data loss.
The data accuracy is related to data loss. Let d (x, y) denote
the distance between the locations “x” and “y.” Let ρspace and
ρtime denote the loss rate of spatial quality per unit distance
and temporal quality per unit of time, respectively. Let d (t, t1)
denote the time difference between time slots t and t1. The
following two conditions define the data accuracy in the aspect
of spatial and temporal qualities:

Spatial Quality =
{

ρspace is low, if d (x, y) is closer

ρspace is high, if d (x, y) is far

Temporal Quality =
{

ρtime is low, if d (t, t1) is smaller

ρtime is high, if d (t, t1) islarger.

According to the above-discussed conditions, if the spatial and
temporal qualities are higher, the data accuracy is also higher.
Let p ∈ R denote any point in the monitoring region. Let
μ

space
p,i denote a Boolean variable indicating whether or not

point p falls in the sensing range of the sensor si . The value
of μ

space
p,i is shown in the following equation:

μ
space
p,i =

{
1, if p falls in the sensing range of si

0, otherwise.
(5)

If point p falls in the sensing range of the sensor si , which
is sensing at the current time slot t , the spatial and temporal
qualities of that point p are one. Recall that μtime

i,t denotes the
Boolean variable representing whether or not the sensor si is
sensing at the current time slot t . On the other hand, assume
that point p falls in the sensing range of the sensor si , but si

is not sensing at the current time slot t . Assume that the most
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recent sensing of the sensor si is at the time slot t1. Therefore,
the data accuracy at the time slot t1 is used to represent the
data accuracy of point p.

Recall that d(t, t1) denotes the time difference between
time slots t and t1. The temporal quality of point p is
(1 − ρtime)

d(t,t1). Let λp,t denote the spatial–temporal quality
of point p at time slot t . The value of λp,t is calculated,
as shown in the following equation:

λp,t =
{

1, if μ
space
p,i = 1, μtime

i,t = 1

(1 − ρtime)
d(t,t1)

, if μ
space
p,i = 1, μtime

i,t1 = 1
(6)

where ρtime denotes the loss rate of temporal quality per unit
of time.

In the following, the spatial and temporal qualities of point
p are further defined for μ

space
p,i �= 1. Let d(p, si ) denote the

distance between point p and sensor si . If point p does not
fall in the sensing range of the sensor si , which is sensing at
the current time slot t , the spatial quality of that point p is
(1 − ρspace)d(p,si ), where ρspace denotes the loss rate of spatial
quality per unit distance. The spatial quality is calculated based
on the distance between point p and the sensor si . Besides,
the temporal quality is calculated based on the time difference
between the current time slot t and the most recent sensing of
the sensor si . Therefore, the spatial–temporal quality of point
p if μ

space
p,i �= 1 is shown in the following equation:

λp,t =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − ρspace)d(p,si ),

if μ
space
p,i �= 1, μtime

i,t = 1

(1 − ρspace)d(p,si ) × (1 − ρtime)
d(t,t1)

,

if μ
space
p,i �= 1, μtime

i,t1 = 1.

(7)

Since the environmental data are changed with time and
distance, the data accuracy is measured according to the spatial
and temporal distances between the reported data and the
actual data. Let the user query be “what is the temperature
of location X at time t? Assume sensor si that is located at
location Y , and it performs the sensing operation at the time t1,
and the query system reports the data collected by the sensor
si to answer this query.

Let μ
space
p,i denote a Boolean variable indicating whether or

not point p falls in the sensing range of the sensor si . Let μtime
i,t

denote the Boolean variable representing whether or not the
sensor si is sensing at the current time slot t . Since the data
accuracy decreased with the spatial distance and time distance
between the actual data and reported data, the accuracy can
be derived by (6) and (7). In a special case, if the sensor si

performs the sensing operation at time t and the sensor si is
located at location X , the accuracy formula will be simplified
as 1. On the other hand, in case the sensing time t1 is far away
from time point t and the sensor is located far away from the
query location X , the formula will be zero. Therefore, the
results of (6) and (7) are between [0, 1]. The data reporting
error can be calculated by 1 − λp,t .

Fig. 3(a) depicts the deployment of the sensor set S in the
monitoring region. Let notation si . loc denote the location of
the sensor si . In Fig. 3(a), the region R has been partitioned
into several Voronoi cells according to the location si . loc of

Fig. 3. Example to represent the spatial and temporal qualities.
(a) Monitoring region R. (b) Sensing range of si . (c) Spatial and temporal
quality representation.

each sensor si ∈ S. Let ci denote the Voronoi cell of the sensor
si . As shown in Fig. 3(b), the polygon which surrounds the
sensor si is the Voronoi cell ci . Therefore, the data collected
by the sensor si will be used to represent the data of any
point p ∈ ci . As shown in Fig. 3(b), the violet dotted lines
denote the sensing range of the sensor si . There are two points
denoted as points p and p�, where p falls, but p� does not fall
in the sensing range of the sensor si , respectively. The spatial
and temporal qualities representations of sensor si to points p
and p� are shown in Fig. 3(c)

As shown in Fig. 3(c), the sensor si is sensing at time slots
t1, t2, and t3. There are three different cases to determine
the spatial and temporal qualities of the sensor si to points
p and p�. In the first case, assume that Data Query 1 is
related to point p at the current time t , and point p falls
in the sensing range of si . However, the sensor si does not
execute the sensing operation at time t . Therefore, the closest
sensing time will be used to represent the data accuracy at
time t . As shown in Fig. 3(c), the closest sensing time slots to
the current time t are t1 and t2. Comparing t1 and t2, the
time slot t1 is closer to the time point t i.e., μtime

i,t1
= 1.

Therefore, the sensor data collected by si at time t1 is used
to represent the sensing data of point p at time t , that is,
the value of λp,t = (1 − ρtime)

d(t,t1). If the WSN reports
the sensing data of t1 (i.e., a), it will result in good data
accuracy. On the other hand, if the WSN reports the sensing
data of t2 (i.e., b), it will result in bad accuracy quality. If the
difference between a and b is larger, the reported data accuracy
for Data Query 1 at time point t is lower. In the second
case, assume that there is Data Query 2 that concerns the
temperature of point p� at current time t , where μ

space
p�,i �= 1 and

μtime
i,t = 1, and the value of λp,t = (1 − ρspace)d(p�,si ). Finally,

in the third case, assume that there is Data Query 3 about
point p�, where μ

space
p�,i �= 1 and μtime

i,t1
= 1, and the value of

λp,t = (1 − ρspace)d(p,si ) × (1 − ρtime)d(t,t1).
Finally, it should be noticed that all the points p ∈ R have

spatial and temporal qualities, no matter whether or not it
belongs to the sensing range of any sensor and whether or
not the sensor is sensing at the current time slot.

Let Q denote the total data accuracy of all the points in the
monitoring region p ∈ R over all the time instants T . The
value of Q is calculated according to the following equation:

Q =
∑
p∈R

∑
t∈T

λp,t . (8)
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Let S represent a possible schedule. The set of possible
schedules is denoted by �. Based on the schedule S, the
proposed algorithm aims to maximize the data accuracy of
all the points p ∈ R over all the time instants T . Let S

best

denote the best schedule. The objective function of this study
is shown in (9).

Objective Function:

S
best = arg max

S∈�

∑
p∈R

∑
t∈T

λp,t . (9)

The first constraint is the sensor battery constraint, which
is shown in (10). This constraint guarantees that E rem

i, j of each
sensor cannot be smaller than emin and greater than Emax

S .
1) Sensor Battery Constraint:

emin ≤ E rem
i, j ≤ Emax

S ∀t j ∈ T ∀si ∈ S. (10)

Another constraint is the charging time constraint, as shown
in (11). Let T crg

i represent the time required to recharge
the sensor si . If ζ

crg
i, j = 1 and it is fully charged, then

Ecrg
i = Emax

S − E rem
i, j . That is to say, the additional

energy of the sensor si obtained from MC cannot be larger
than min

(
Emax

S − emin, Emax
S − E rem

i, j

)
. Let echarge

M denote the
recharging rate of MC. The charging time constraint is shown
in (11).

2) Charging Time Constraint:

0 ≤ T crg
i ≤

min
(

Emax
S − emin, Emax

S − E rem
i, j

)
echarge

M
∀t j ∈ T ∀si ∈ S. (11)

Let ζ
req
i, j denote a Boolean variable indicating whether or

not the sensor si requested a charging request at the time slot
t j . That is,

ζ
req
i, j =

{
1, E rem

i, j < ereq
th,i (request charging)

0, E rem
i, j > ereq

th,i (sufficient energy).
(12)

Let ζ wrk
i, j denote a Boolean variable indicating whether or

not the sensor si is working at the time slot t j . We have

ζ wrk
i, j =

{
1, E rem

i, j > emin
i (working)

0, E rem
i, j < emin

i (sleeping).
(13)

The final recharging request constraint guarantees that every
sensor si must send the recharging request to MC before it
switches to the sleeping state. This constraint is shown in (14).

3) Recharging Request Constraint:

ζ
req
i, j ≥ ζ wrk

i, j ∀si ∈ S ∀t j ∈ T . (14)

Section IV will detail the proposed algorithm, aiming to
achieve the objective function (9) while satisfying the given
constraints (10), (11), and (14). Nomenclature summarizes the
common notations used in this article.

IV. ALGORITHM DESCRIPTION

This article proposed an algorithm called RS-STQ. The pro-
posed RS-STQ algorithm develops an efficient-energy recharg-
ing schedule for MC, aiming to maximize the data accuracy.
To increase the temporal quality, an energy management strat-
egy is proposed for each sensor aiming to adjust its sensing
time sequences of neighboring sensors. Therefore, sensors can
rescue themselves by saving their energy and wait for the MC
to recharge them.

The proposed RS-STQ algorithm mainly consists of three
phases, including the Threshold Determination (TD) Phase,
the Recharging Path Construction (RPC) Phase, and the
Sensing Rate Calculation (SRC) Phase. The first phase aims
to calculate the threshold value of each sensor for sending the
recharge request to the MC. In the second phase, the MC con-
siders some additional requests in ξ and dynamically adjusts
its recharging path. In the final phase, the total waiting time of
the scheduled sensors on the current path is calculated. Based
on the waiting time, each scheduled sensor will calculate its
sensing frequency. If the sensing range of any scheduled sensor
overlaps with neighboring scheduled sensors, they can adjust
their sensing time sequence to manage their energy until the
MC recharges them.

A. Threshold Determination Phase
As mentioned in Section III-B, there are two threshold val-

ues for each sensor, including the recharging request threshold
ereq

th,i and sleep threshold emin, respectively. Recall that emin

is predefined for each sensor si , while the other threshold
value ereq

th,i is locally determined by the sensor si . The detailed
computation of ereq

th,i is discussed in the following.
Most of the related studies assumed that the threshold values

of each sensor are fixed. Those studies defined that, whenever
the remaining energy of the sensor reached the predefined
threshold value, a recharge request will be sent from the sensor
to the MC. This strategy is not very flexible. One reason is
that the threshold value represents the remaining lifetime of
that sensor. A big threshold value causes each sensor to send
a recharge request to the MC early, which might mislead the
MC schedule. This can cause the sensor to still have higher
remaining energy when the MC arrives. Since the energy of
the MC was major consumed by moving instead of recharging,
the recharging efficiency is low. However, a small threshold
value can cause the sensor to enter a sleep state due to energy
exhaustion. Therefore, the threshold value should be dynam-
ically determined based on several parameters, including the
estimated required time for the MC and the energy discharging
rate of each sensor.

Let sensors in set S can be further partitioned into two sub-
sets S̃ and Ŝ, called the strong-energy set and the weak-energy
set of sensors, respectively. Let notation S̃ = {s̃1, . . . , s̃|S̃|}
denote the set of strong-energy sensors that are working but
still do not send recharge requests to the MC. On the contrary,
let Ŝ = {ŝ1, . . . , ŝ|Ŝ| denote the set of weak-energy sensors that
have sent the recharge request to the MC. The strong-energy
sensor s̃i should perform the operations designed in this phase,
which aims to calculate its threshold value.
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Unlike the related studies, the proposed RS-STQ algorithm
considered the discharging rate edisch

i of sensor s̃i ∈ S̃,
and the length of the service pool ξ is maintained by the
MC, aiming to dynamically calculate the recharging request
threshold ereq

th,i of each sensor s̃i ∈ S̃. Therefore, the threshold
value ereq

th,i is not predefined and is determined by each sensor
locally. By satisfying the constraint given in (14), this article
ensures every sensor sends the recharge request to the MC
at the appropriate time. Hence, the recharging request plays
important role in the recharging scheduling of the MC.

In this article, the MC uses quorum to broadcast its current
schedule periodically to all the sensors. This can help sensors
estimate the required time for the MC. Recall that MC
maintains all the recharge requests in ξ . Assume that there
are y requests stored in ξ represented as {ŝ1, ŝ2, . . . , ŝy}.
Recall that lk represents the location of the sensor sk . The
MC will broadcast its current schedule to all the sensors by
using a quorum. Assume that the current recharge schedule
of MC is represented as ((ŝ1, l1), (ŝ2, l2), . . . , (ŝy, ly)). The
current schedule broadcasted by MC includes the location of
each scheduled sensor. The proposed RS-STQ is a distributed
algorithm. Based on the schedule of the MC, all the other
sensors determine their threshold value ereq

th,i locally.
To calculate the threshold value ereq

th,i of each sensor, the
required time duration for MC to recharge the sensor s̃i should
be calculated. The total required time duration includes the
time required for the MC to move to each sensor node and
recharge those scheduled sensors ŝi ∈ Ŝ in service pool ξ .
Let τ

crg
k denote the time duration required for MC to fully

recharge the sensor ŝk . The value of τ
crg
k can be calculated,

as shown in the following equation:

τ
crg
k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Emax
S −

(
E rem

k, j − edisch
k ∗ T wait

k

)
echarge

M

, if k = i

Emax
S

echarge
M

, if k �= i.

(15)

Let ŝ0 denote the sink node. Let v denote the speed of
the MC. Let τmv

k denote the time duration required for MC to
move from sink/ŝk−1 to ŝk . The value of τmv

k can be calculated,
as shown in the following equation:

τmv
k = d(ŝk−1, ŝk)

v
, 1 ≤ k ≤ y. (16)

By combining the charging and moving times of each sensor
ŝi ∈ Ŝ in ξ , the total time required for a strong-energy sensor
s̃i ∈ S̃ to wait for MC can be calculated. Let τ need

M denote the
total time required for MC to recharge and move to all the
sensors in ξ . Assume that sensor s̃i ∈ S̃ is the next requesting
sensor whose request is stored in the (y + 1)th position. The
value of τ need

M is evaluated in the following equation:

τ need
M =

y∑
k=1

τ
crg
k +

y∑
k=1

τmv
k . (17)

Finally, the threshold value of the sensor s̃i ∈ S̃ is evaluated,
as shown in the following equation:

ereq
th,i = emin + τ need

M ∗ σ ∗ edisch
i (18)

where σ is a constant and edisch
i is the discharging rate of

the sensor s̃i . Therefore, each sensor s̃i ∈ S̃ can determine
its threshold value ereq

th,i . The request packet format can be
represented as 
id , li , E rem

i, j , edisch
i , t j �, where id denotes the

unique identity, li is the sensor location, E rem
i, j is the remaining

energy at the time slot t j , edisch
i is the discharging rate, and t j

is the current time slot, respectively, of the sensor s̃i ∈ S̃. The
RPC of the MC is detailed in the following phase.

B. Recharging Path Construction Phase
To consider the opportunities of promptly responding to the

local charging requests, the MC should first check its service
pool ξ after finishing the recharging task of each sensor.

In this phase, the MC considers additional requests from
ξ and calculates the spatial quality benefit of each requested
sensor ŝi ∈ Ŝ in ξ . Then, the sensor with the largest spatial
quality benefit in ξ will be included in the current path
℘current, while the sensor with the least spatial quality benefit
will be deleted from ℘current and be sent to ξ . Recall that
ξ = ŝ1, ŝ2, . . . , ŝy denotes the set of sensors, which have sent
recharging requests to the MC. Recall that sensor s̃i ∈ S̃
denotes the strong-energy sensor, which is working but still
does not send a recharge request to the MC. Initially, each
sensor s̃i ∈ S̃ will calculate the threshold value according to
(18) and send the request to MC. After finishing the recharging
task of one sensor, the MC will examine its request queue. For
each requested sensor s̃i in the queue, the MC will calculate
the spatial quality contributed by s̃i and decides whether or
not to include it to ℘current.

The spatial quality calculation is complicated and will be
presented in the following. Let c j denote the Voronoi cell of
the sensor s j . Let vfar

j ∈ c j denote the farthest point to s j .
Let di, j denote the distance between vi and s j . vfar

j can be
derived, as shown in the following equation:

vfar
j = arg max

vi 
c j ,s j
di, j . (19)

Recall the definition of the spatial quality of a point p at
time t , as shown in (7)

λp,t = (1 − ρspace)d(p,si). (20)

Herein, only the spatial quality contributed by the sensor
s̃i is concerned. Therefore, the time dimension in (7) will be
ignored. That is, the spatial quality of the vertex vfar

j will be
calculated by

λv far
j

= (1 − ρspace)
d(v far

j ,si ). (21)

Let λc j denote the spatial quality of cell c j . The spatial
quality of cell c j will be represented by the smallest spatial
quality of points in c j . That is,

λc j = arg min
p
c j

λp = λv far
j

. (22)

According to (22), the spatial quality of each Voronoi cell
c j can be calculated. Next, the spatial quality contributed by
the sensor s̃i will be calculated by the MC. Let c j,î denote the
Voronoi cell, which covers the sensor s̃i under the assumption
that the sensor s̃i stays in a sleep state. Let c j and ci denote the
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two Voronoi cells in case the sensor s̃i stays working. When
s̃i is sleeping, the Voronoi cell is denoted by c j,î , and when
s̃i is working, the Voronoi cells are denoted by c j and ci . The
difference between the two conditions depends on whether
or not s̃i is working; the spatial quality contributed by the
sensor s̃i will be calculated. Consider the first condition that
s̃i is sleeping. The spatial quality of cell c j,î is λc j,î

. On the
contrary, consider the second condition that s̃i is working. Let
λc j ,ci denote the spatial quality of cells c j and ci . The spatial
quality of cells c j and ci can be represented by the lower
spatial quality of the two cells. That is,

λc j ,ci = min(λc j , λci ). (23)

Let At
i denote the spatial quality contributed by the sensor

s̃i at the current time. The value of At
i can be calculated by

the following equation:
At

i = λc j ,ci − λc j,î
. (24)

Let Bs̃i denote the total data accuracy benefit for including
s̃i to path ℘current. The total data accuracy benefit is denoted as
the ratio of spatial quality contribution of s̃i and the increased
path length. Recall that the request packet format consists
of the location of the sensor. Upon receiving the recharging
request from the sensor s̃i , the MC knows the location of the
sensor. Assume that the MC includes the sensor s̃i between
the sensors ŝ j−1 and ŝ j , which have been already scheduled
in the recharging path ℘current. Let �di denote the distance
difference of MC by including s̃i to ℘current. The value of
�di can be calculated, as shown in the following equation:

�di = dŝ j−1,s̃i + ds̃i ,ŝ j − dŝ j−1,ŝ j . (25)

Therefore, the value of Bs̃i can be evaluated, as shown in
the following equation:

Bs̃i = At
i

�di
. (26)

After the MC calculates the data accuracy benefit Bs̃i of
s̃i , it further applies two strategies, including single passer-by
update (SPU) and multiple passer-by update (MPU) strategies,
to make the recharging decision. In the insertion condition of
the SPU strategy, there will be at most one sensor from the
service pool ξ to be served and will be included to ℘current.
Similarly, in the deletion condition of the SPU strategy, there
will be at most one sensor to be deleted from ℘current and
to be moved to buffer ξ . On the contrary, the MPU strategy
might include more than one sensor from ξ to ℘current, while
it also deletes more than one sensor from ℘current. The details
of the SPU strategy are presented in the following.

Let Bξ
s̃i

and B℘
ŝ j

denote the data accuracy benefit of each

sensor s̃i ∈ ξ and ŝ j ∈ ℘current, respectively. To obtain
Bξ

s̃i
and B℘

ŝ j
, the data accuracy benefit of each sensor in the

path ℘current or in buffer ξ should be calculated by the MC.
As shown in (26), the data accuracy benefit of each sensor
s̃i ∈ ξ and ŝ j ∈ ℘current should be calculated. Let Sξ

best denote
the sensor with the largest data accuracy benefit Bξ

s̃i
in ξ . That

is,

Sξ
best = arg max

s̃i∈ξ
Bξ

s̃i
.

Let S℘
worst denote the sensor with the least data accuracy

benefit B℘
ŝ j

in ℘current. The value of S℘
worst is calculated as

shown in the following:
S℘

worst = arg min
ŝ j ∈℘current

B℘
ŝ j

.

Let Bξ
avg and B℘

avg denote the average data accuracy benefit
of the sensors in ξ and ℘current, respectively. Bξ

avg can be
calculated, as shown in the following equation:

Bξ
avg =

⎛
⎝ |ξ |∑

s̃i=1

Bξ
s̃i

⎞
⎠/

|ξ | . (27)

The notation B℘
avg can be evaluated, as shown in the

following equation:

B℘
avg =

⎛
⎝ |℘|∑

ŝ j =1

B℘
ŝ j

⎞
⎠/

|℘| . (28)

The values of Bξ
avg and B℘

avg are used to determine whether
or not sensor s̃i will be included to ℘current, and sensors ŝ j will
be deleted from ℘current. Let Bξ

best and B℘
worst denote the data

accuracy benefit of Sξ
best and S℘

worst, respectively. The insertion
and deletion conditions of each sensor s̃i ∈ ξ and ŝ j ∈ ℘current

of the SPU strategy are presented in the following.
Insert Condition of SPU Strategy:

Bξ
best > B℘

avg.

Delete Condition of SPU Strategy:

B℘
worst < Bξ

avg.

By applying the insert condition of the SPU strategy, the
sensor s̃i ∈ ξ will be included to ℘current only if it has the
largest data accuracy benefit, and it should be greater than
B℘

avg. Similarly, the delete condition of the SPU strategy is
that the sensor ŝ j ∈ ℘current will be deleted from ℘current if it
has the least data accuracy benefit, and it should be smaller
than Bξ

avg. The insertion and deletion conditions of the MPU
strategy are shown in (29) and (30), respectively.

Insert Condition of MPU Strategy:

Bξ
s̃i

> B℘
avg ∀s̃i ∈ ξ. (29)

Delete Condition of MPU Strategy:

B℘
ŝ j

< Bξ
avg ∀ŝ j ∈ ℘current. (30)

In the insert condition of MPU, all the sensors in ξ whose
data accuracy benefit is larger than the average benefit B℘

avg
will be included to ℘current. Similarly, in the delete condition of
MPU, all the sensors on ℘current whose data accuracy benefit is
smaller than Bξ

avg will be deleted from ℘current. Fig. 4 depicts
an example to illustrate the insertion and deletion conditions
of the SPU strategy.

As shown in Fig. 4, ℘current = ŝfinish, ŝ1, ŝ2, ŝ3, ŝ4, ŝ5, ŝ6.
Assume that the MC finishes recharging the sensor ŝfinish and
wants to recharge the sensor ŝ1 at current time t . During the
execution of recharging ŝfinish, the MC receives the recharging
request from the sensors s̃8, s̃10, and s̃9. To include the best
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Fig. 4. Example path constructed by MC adopting the SPU strategy.

sensor Sξ
best to ℘current, the MC executes (19)–(26) for the

sensors s̃8, s̃10, and s̃9. Assume that Sξ
best = s̃8 and S℘

worst = ŝ3.
By applying the SPU strategy, the sensor s̃8 will be included
only if it satisfies the condition Bξ

8 > B℘
avg. Similarly, the

sensor ŝ3 will be deleted from ℘current if it satisfies B℘
3 < Bξ

avg.
Let ℘updated denote the new recharging path constructed by
MC. After the execution of the SPU strategy, ℘updated can be
represented as ℘updated = {ŝfinish, ŝ1, ŝ8ŝ2, ŝ4, ŝ5, ŝ6}.

C. Sensing Rate Calculation Phase
An energy management strategy is designed in this phase,

aiming to adjust the sensing time sequences of each scheduled
sensor to increase the temporal data accuracy. There are two
tasks in this phase, which are detailed in the following.

1) Task I: Waiting Time Calculation: Initially, this task aims
to calculate the waiting time of each sensor on the current
path. Based on their waiting time, all the sensors can cal-
culate their sensing rate frequency. If the sensing range of
any scheduled sensor overlaps with the neighboring sched-
uled sensors, they can adjust their sensing time sequences
according to the following designed operation. Let ℘current =
{ŝfinish, ŝ1, ŝ2, . . . , ŝn} denote the current scheduled path of
the MC. Let ŝfinish denote the most recent recharged sensor
on the path ℘current. During the network initialization, the
MC considers all the sensors’ requests from ξ as the set of
recharging candidates and constructs the shortest Hamiltonian
path.

The MC calculates the waiting time of each sensor ŝi ∈
℘current. Recall that the value of τ

crg
k can be calculated accord-

ing to (15). Let T wait
i denote the waiting time of each sensor

ŝi . T wait
i can be calculated, as shown in the following equation:

T wait
i =

{
τmv

i , i = 1

T wait
i−1 + τ

crg
k + τmv

i , 2 ≤ i ≤ n.
(31)

Based on their waiting time, each sensor ŝi can calculate
their sensing rate frequency. Let S

freq
i denote the sensing rate

frequency of the sensor ŝi . Recall that Econ
i denotes the energy

consumed by the sensor ŝi for executing both the sensing and
communication tasks. The value of S

freq
i is evaluated in the

following equation:

S
freq
i = E rem

i

Econ
i ∗ T wait

i

. (32)

Fig. 5. Example to present the cooperative sensing between neighbors.
(a) ŝ1 and ŝ2 sensing every two days. (b) ŝ1 and ŝ2 are sensing at the
same time. (c) ŝ1 and ŝ2 are cooperatively sensing.

After calculating the sensing rate frequency, the cooperation
between the neighboring sensors is discussed in the following
task.

2) Task II: Cooperative Sensing Between Neighbors: This
task aims to explore the opportunities for cooperative sensing
between neighbors to further improve the temporal quality of
a local region. The following gives an example to explain
the motivation of cooperative sensing between two neighbors.
According to the example shown in Fig. 5, it is obvious
that the temporal quality can be significantly improved. The
following formally presents how each sensor can achieve
cooperative sensing by adjusting its sensing time sequences.
After calculating S

freq
i , each sensor ŝi ∈ ℘current whose sens-

ing range overlaps with their neighboring scheduled sensors
will execute the following operations, which adjust its sens-
ing time sequence according to the neighbor’s sensing time
sequence.

Assume that sensors ŝu and ŝv are neighbors. Let αu

and αv denote the sensing ranges of the sensors ŝu and ŝv ,
respectively.

Let ηu,v denote a Boolean variable to indicate whether or
not αu and αv overlaps with each other. The value of ηu,v is
calculated in the following equation:

ηu,v =
{

1, if αu ∩ αv �= ∅
0, otherwise.

(33)

Let Tu = [t1
u , t2

u , t3
u , . . . , tn

u ] denote the sensing time sequence
of the sensor ŝu . Any two neighboring sensors should adjust
their sensing rate only if it satisfies the following two
conditions.

Overlapping Criterion:
The spatial quality of ŝu and ŝv should intersect with each

other. That is,

ηu,v = 1.

Identical-Frequency Criterion:
The two sensors ŝu and ŝv should satisfy

t i
u − t i−1

u = t i
v − t i−1

v .

The identical-frequency criteria check if the sensing time
sequence of one sensor is identical to the other sensor’s time
sequences and if they regularly overlap each other.
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Fig. 6. Example to illustrate the sensing time sequence adjustment
of sensors ŝv and ŝu. (a) Monitoring region R. (b) Spatial quality of ŝv
and ŝu. (c) Adjusted sensing time sequence of ŝv and ŝu.

Let Nŝu denote the neighbor nodes of the sensor ŝu . Each
sensor ŝu should check each of its neighbors ŝv ∈ Nŝu whether
or not the above two criteria are satisfied. If it is the case, any
sensor ŝu or ŝv is scheduled first without any change. Without
the loss of generality, the sensor with a larger ID is assumed to
schedule first. Assume that ŝv is scheduled first, and ŝu adjusts
its sensing time sequences to enhance the temporal quality. Let
told,i
u and tnew,i

u denote the original and adjusted sensing time
sequence of ŝu . Let f v denote the sensing time frequency of
ŝv . The sensor ŝu shifts its sensing time sequence to the right
according to (34), aiming to improve the temporal quality of
the network

tnew,i
u = told,i

u + f v

2
. (34)

Fig. 6 illustrates an example to adjust the sensing time
sequence of the neighboring sensors. As shown in Fig. 6(a),
the red pentagon shape denotes the sensors scheduled on the
current path ℘current = {ŝfinish, ŝ1, ŝ2, ŝ3, ŝ4, . . . , ŝu, ŝv }. The
spatial quality of sensors ŝv and ŝu is shown in Fig. 6(b).
Since the spatial quality of sensors ŝv and ŝu overlaps,
they should adjust their sensing time sequence, as shown
in Fig. 6(c).

Assume that Sfreq
v and Sfreq

u are four days, which is identical.
If both sensors ŝv and ŝu are scheduled at the same time
slots, their temporal quality is shown in the upper part of
Fig. 6(c). Assume that sensor ŝv is scheduled first because of
its larger ID, and then, the sensor ŝu will adjust its sensing time
sequence, as shown in the bottom part of Fig. 6(c), according
to (34). Thus, the temporal quality is improved.

V. PERFORMANCE EVALUATIONS

In this section, the performances of the proposed
RS-STQ with SPU and MPU strategies hereafter denoted as
RS-STQ(SPU) and RS-STQ(MPU) algorithms are evaluated
against the existing ETLBO and MERSH algorithms. The
MERSH algorithm [31] considered the tolerable latency to
construct the recharging path of the MC. The ETLBO [32]

TABLE II
SIMULATION PARAMETERS

Fig. 7. Performance comparison of total data accuracy for
RS-STQ(MPU), RS-STQ(SPU), ETLBO, and MERSH algorithms.

proposed charging scheduling by considering the service cost
and energy replenishment utility. This study formulated the
best candidate position and time to insert the new charg-
ing candidates into the original path aiming to improve the
charging efficiency. The simulation environment and results
are discussed in the following.

A. Simulation Environment
MATLAB R2019b is used as the simulation tool of this

study. The sensor deployment is random in the area of size
600 × 400 m. The number of sensors is between 300 and 700.
The sensing range of each sensor is adjusted between 5 and
20 m. The sleep threshold value emin

i of each sensor is set
from 0.3 to 0.7 J. edisch

i is set at 0.05 J/s. The initial energy
of each sensor is set at 3.6 kJ. The charging rate of the MC
is adjusted between 3 and 15 J/s. The MC speed is varied
ranging from 1 to 8 m/s. All the parameters are summarized
in Table II.
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Fig. 8. Performance comparison of total data accuracy by varying the
threshold value e��� and value of α.

B. Simulation Results
Fig. 7 compares the total data accuracy of RS-STQ(MPU),

RS-STQ(SPU), ETLBO, and MERSH algorithms. The sensors
are varied ranging from 300 to 700, while the sensing range
is set between 5 and 20 m. As shown in Fig. 7, the total
data accuracy of RS-STQ(MPU), RS-STQ(SPU), ETLBO, and
MERSH algorithms increases with the sensors. This is due
to that deployed sensors can increase the density of sensors
in the network. Therefore, the distances between neighboring
sensors are generally reduced. This also implies that the MC
can recharge more sensors with a smaller movement cost. As a
result, the total data accuracy increases with the number of
deployed sensors.

On the other hand, the total data accuracy increases with the
sensing range. This occurs because a sensor with a larger sens-
ing range can cover a larger area. In comparison, the proposed
RS-STQ(MPU) yields the best performance compared to the
RS-STQ(SPU), ETLBO, and MERSH algorithms. This occurs
because the proposed RS-STQ(MPU) algorithm recharges
more sensors that have higher spatial quality compared to
RS-STQ(SPU), leading to higher data accuracy. Besides, both
the ETLBO and MERSH algorithms improved the charging
efficiency and reduced the dead nodes. However, none of the
two algorithms considered the spatial and temporal qualities of
recharging requested sensors, leading to lower data accuracy.

Fig. 8 depicts the comparison of total data accuracy of
RS-STQ(MPU), RS-STQ(SPU), ETLBO, and MERSH algo-
rithms. Let α denote the ratio of recharging and discharging
rates. We have

α = echarge
M

edisch
i

. (35)

To conduct this experiment, the sleep threshold value emin is
varied ranging from 0.3 to 0.7, while the value of α is adjusted
between 20 and 50. As shown in Fig. 8, the total data accuracy
decreases with the threshold value emin. This is due to that the

smaller value emin leads to longer working time, resulting in
higher data accuracy. On the other hand, the total data accuracy
is increased with the value of α. This is due to that a large
value of α can reduce the recharging time of sensors. There-
fore, sensors can be recharged more quickly and then work
for improving the data accuracy. In comparison, the proposed
RS-STQ(MPU) yields the best performance compared with
the RS-STQ(SPU), ETLBO, and MERSH algorithms. This is
due to that the RS-STQ(MPU) recharges the sensor, which
has higher spatial quality. Therefore, a smaller threshold value
emin and a larger value of α make the sensor work for a
longer time, achieving higher data accuracy. The MERSH and
ETLBO algorithms considered the tolerable latency and the
service cost to recharge the sensors and ignored the spatial
and temporal quality. Therefore, the data accuracy of MERSH
and ETLBO algorithms is still lower.

The energy usage efficiency (EUE) of the MC and the
average waiting time (AWT) of the sensors during the elapsed
time are evaluated in Fig. 9(a) and (b), respectively. Let E trv

and Ecrg denote the amount of energy consumed for traveling
and charging, respectively. That is,

EUE = Ecrg

E trv + Ecrg . (36)

To conduct this experiment, 500 sensor nodes are deployed,
and the sensing range of each sensor is set at 10 m. Let
SPU, MPU2, MPU3, MPU4, and MPU5 denote the single
sensor insertion with the SPU strategy and two, three, four,
and five sensors insertion with the MPU strategy to the
path. As shown in Fig. 9(a), EUE of SPU, MPU2, MPU3,
MPU4, and MPU5 algorithms is generally increased with the
elapsed time. This is during the network initialization; all
the algorithms construct the shortest Hamiltonian path. Each
algorithm inserts the sensors with higher spatial quality as the
elapsed time increases; thus, EUE of MC is better utilized.
In comparison, the MPU5 yields the best performance. This
occurs because MPU5 inserts more sensors that have higher
spatial quality compared to all other algorithms. Thus, the
MPU5 algorithm achieves higher EUE.

Recall that T wait
i,t denotes the waiting time of the sensor ŝi ,

which can be calculated according to (31). Let T avg
i,t denote the

AWT of sensors ŝi ∈ ℘current at current time t . The value of
AWT can be calculated, as shown in the following equation:

T avg
i,t =

∑|n̂|
î=1

T wait
î,t∣∣ŝn

∣∣ . (37)

The simulation settings of Fig. 9(b) are similar to Fig. 9(a).
In Fig. 9(b), AWT for the MPU5 algorithm is compared by
adjusting the value of α. As shown in Fig. 9(b), when α is
set at 50, the value of AWT is very low. This occurs because
a large value of α can reduce the recharging time of sensors.
That is to say, increasing the charging rate allows the MC to
recharge more requested sensors.

Fig. 10 investigates the speed of the MC on the Recharged
Sensors Spatial Quality (RSSQ) Contribution and total data
accuracy. To conduct this experiment, the number of sensors
deployed is 700 and 600. The RSSQ is defined by the spatial
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Fig. 9. Performance comparison of EUE and AWT for SPU, MPU2,
MPU3, MPU4, and MPU5 algorithms. (a) EUE versus elapsed time.
(b) AWT versus elapsed time.

Fig. 10. Performance comparison of RSSQ and total data accuracy by
varying the speed of the MC.

quality obtained by the recharged sensors divide by the size of
the monitoring region R. Let �i represent the working time
length of the sensor si . Recall that Ax

i denotes the spatial

Fig. 11. Total data accuracy of the network considering the SPU
and MPU strategies. (a) With considering the SPU strategy. (b) With
considering the MPU strategy.

quality contribution of ŝi at time slot tx ∈ T . The RSSQ can
be evaluated, as shown in the following equation:

RSSQ =
∑n

i=1
∑tm

j=t1

(
ζ

crg
i, j × ∑t+�i

x=t Ax
i

))
R

. (38)

As shown in Fig. 10, RSSQ of RS-STQ(MPU) and RS-
STQ(SPU) is increased with the speed v. This occurs because,
when the speed of the MC increases, it can recharge more
number of requested sensors whose spatial quality is higher,
leading to higher RSSQ. Besides the RSSQ of ETLBO and
MERSH algorithms increases and decreases regardless of the
speed v. This is because the spatial quality of recharging
sensors is ignored. On the other hand, the data accuracy is
decreased with the speed v. This occurs because, when the
speed of the MC is decreased, the number of recharged sensors
decreases. Thus, the data accuracy is reduced with speed v.

Fig. 11 further analyzes the total data accuracy of the net-
work by considering the SPU and MPU strategies. To conduct
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this experiment, 700 sensor nodes are randomly deployed,
while the sensing range of each sensor is set at 10 m. The
speed of the MC is set at 2 m/s. Fig. 11(a) measures the total
data accuracy of the network by considering the SPU strategy.
That is to say, the MC constructs the shortest Hamiltonian
path to the requested sensors in ξ and recharges them. The
MC inserts or removes a single sensor at most, from the
current schedule. The total data accuracy of the network is
not stable compared with Fig. 11(b). As shown in Fig. 11(a),
the highest and lowest data accuracies obtained are 0.68 and
0.991, respectively.

On the other hand, Fig. 11(b) depicts the total data accuracy
of the network by applying the MPU strategy. That is to
say, the MC inserts or removes more than one sensor at a
time from the current schedule. The MPU strategy provides
more flexibility to the MC. In case the sensors in ξ contribute
larger data accuracy than the sensors on the recharging path,
it can quickly remove the low-contribution sensors and insert
high-contribution sensors to achieve higher data accuracy.
Therefore, the total data accuracy of the network is stable.
The highest and lowest data accuracies obtained in Fig. 11(b)
are 0.816 and 1, respectively. The total data accuracy obtained
in Fig. 11(a) is lower than in Fig. 11(b). In comparison, the
total data accuracy is improved by 13.6%.

Fig. 12 further compares the uncharged sensors DAL by
varying the value of α and the sleep threshold emin. The values
of α and emin are varied ranging from 20 to 50 and 0.3 to
0.7, respectively. To conduct this experiment, 700 sensors are
randomly deployed, while the sensing range is set at 10 m. The
uncharged sensors DAL is defined by the spatial quality loss
caused by the requested sensors divided by the area R. The
value of uncharged sensors DAL can be calculated, as shown
in the following equation:

DAL =
∑n̂

î=1

∑tm
j=t1

(
At

î
× 1 − ζ wrk

î, j

)
R

. (39)

As shown in Fig. 12, DAL is decreased with the increasing
value of α. This occurs because a higher recharging rate
and the lower discharging rate reduce the recharging time.
Therefore, most of the requested sensors can be recharged,
reducing the value of DAL. On the other hand, the DAL
is decreased with emin. This is due to the higher value of
emin leads the requested sensors to switch to the sleep state,
resulting in a higher DAL. In comparison, the proposed RS-
STQ(MPU) algorithm yields the lowest DAL compared to
the RS-STQ(SPU), ETLBO, and MERSH algorithms. This
is because the proposed RS-STQ(MPU) considers the spatial
quality of the recharging requested sensors and inserts multiple
sensors at a time into the path, aiming to achieve higher data
accuracy. Besides, the existing two algorithms ignored the
spatial quality contributions of recharging requested sensors.

Fig. 13 investigates the performance of the proposed two
algorithms, RS-STQ(MPU) and RS-STQ(SPU), against the
existing studies ETLBO and MERSH in terms of control
overheads. The number of sensor nodes is varied ranging
from 300 to 1000. As shown in Fig. 13, the RS-STQ(MPU)
and RS-STQ(SPU) algorithms generate more control packets
with the number of deployed sensors. This occurs because

Fig. 12. Performance comparison of uncharged sensors DAL.

Fig. 13. Performance comparison of control packet overhead by varying
the number of sensor nodes.

each deployed sensor should construct its Voronoi diagram
and exchange its location information (i.e., control packets)
with neighboring sensors. If the number of deployed sensors
keeps increasing, there will be more communication between
the neighboring sensors, making the connectivity more robust.
On the other hand, the control overheads of the ETLBO and
MERSH algorithms are slightly increased with the number
of deployed sensors. This occurs because of proactive route
information maintenance.

VI. CONCLUSION

This article proposed an efficient-energy recharging
scheduling algorithm, called RS-STQ for the WRSNs. The
proposed algorithm consists of three phases: TD, RPC, and
SRC phases. The first phase formulated an adaptive threshold
value for the sensor nodes that each of them determines locally.
In the second phase, the MC considered the spatial quality of
each recharging requested sensor to construct its recharging
path. In addition, SPU and MPU strategies are proposed to
insert and delete the requested sensors to the current path based
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on their spatial quality contribution. In the final phase, the
sensing time sequences of two neighboring requested sensors
are adjusted, aiming to improve the temporal data accuracy.

Our future work is to focus on dispatching multiple MCs
based on the prediction of energy consumption rate and the
future request rate of sensors.
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