
Fault-Tolerant Sorting Algorithm on HypercubeMulticomputersJang-Ping Sheu, Yuh-Shyan Chen, and Chih-Yung ChangDepartment of Electrical Engineering, National CentralUniversity, Chung-Li 32054, Taiwan, R.O.C.sheujp@ncu.dnet.ncu.edu.twCorrespondence Address: Prof. Jang-Ping SheuDepartment of Electrical Engineering, National Central UniversityChung-Li 32054, Taiwan, R.O.C.
April 1, 1992

AbstractIn this paper, algorithmic fault-tolerant techniques are introduced for sorting al-gorithms on n-dimensional hypercube multicomputers. We propose a fault-tolerantsorting algorithm that can tolerate up n� 1 faulty processors. First, we indicate thatthe bitonic sorting algorithm can perform sorting operations correctly on the hyper-cubes with one faulty processor. In order to tolerate up r � n� 1 faulty processors,a partition algorithm is presented. The algorithm partitions the original hypercubewith minimum number of cuts into a set of subcubes such that each subcube hasat most one faulty processor. The bitonic sorting algorithm can then be applied ineach subcube correctly. Finally, each subcube is viewed as a node and a bitonic-likesorting procedure is applied to the subcubes with little communication overhead. Be-sides, we implement our algorithm on NCUBE/7 MIMD hypercube machines with 64processors. The simulation results show that the performance of our fault-tolerantsorting algorithm on hypercubes is better than the approach for �nding the maximalfault-free subcubes.Keyword: Bitonic sorting algorithm, fault tolerance, hypercubes, parallel processing,parallel sorting algorithms.

1. IntroductionHypercube multicomputers [16] have become commercially available in the pastfew years due to its high degree of connectivity, symmetry and low degree of diame-ter [14]. A great many of scienti�c algorithms directly developed for the hypercubeshave been more e�cient than mapping onto other parallel architectures or embed-ding to other topologies, such as sorting algorithms [15], matrix multiplication [4],network ow problems [17], and graph theories [18]. As the n-dimensional hypercubemulticomputers interconnect exactly N = 2n processors, system performances will beseriously reduced and system resources will be severely consumed when faulty proces-sors/links occur in the hypercube multicomputer. Fault tolerance has then been veryimportant in such a large distributed computing environment for continuing opera-tions of the hypercube multicomputers after failure of one or more processors/links.E�cient sorting algorithms have generally been the fundamental components and fac-tors of many scienti�c algorithms. Designing a fault-tolerant sorting algorithm thatcan tolerate n� 1 faulty processors on the n-dimensional hypercube multicomputersis, consequently, the purpose of this study.Most of the recently proposed fault-tolerant schemes address the issue of recon-�guration once the faulty processors are identi�ed [1] [3] [6] [8] [12] [13]. The recon-�guration approaches may comprise hardware and software strategies. The hardwarerecon�guration strategy suggests a new fault-tolerant hypercube architecture in ex-pectation of high availability and error-free computations. The key concept of thescheme is in employing redundant spare processors for serving a number of normalprocessors; each of the spare processors, as a result, can replace any detected faultyprocessor. The use of hardware switches in tolerating faults on hypercubes has �rstbeen suggested by Rennels [13]. Chau [6] recently presented a fault-tolerant recon-�guration scheme for hypercubes. The scheme can achieve the same reliability asRennels' by using more decoupling switches and fewer spare processors. However,Chau's scheme takes a longer time than Rennels' in recon�guring the environmentof hypercubes. Alam [1] also proposed an e�cient modular spare allocation methodusing the same number of spare processors and less switches for achieving the same re-liability as Chau's scheme. The module replacement strategy has restored the systemto full operations but requires redundant modules which are not used for normal op-erations. Such a strategy then has a serious shortcoming of high hardware complexity- 1 -

and low processors utilization.Some researchers in software recon�guration strategy have exerted themselves toresearching fault-tolerant algorithms on hypercubes with one faulty processor [8]. Thishas been done under the considerations of optimally redistributing the load for eachprocessor, minimizing the e�ect on the normal processors, and maintaining the lowcommunication overhead. Elster [8] designed fault-tolerant matrix operations on thehypercube multicomputers. The system, however, could only tolerate one faulty pro-cessor. The recon�guration of the fault-tolerant algorithm for handling more than onefaulty processor or link on hypercube multicomputers has, up to date, been reducedto �nding a subset of fault-free processors that is still connected by the hypercubeconnection of a lower dimension. �Ozg�uner proposed the maximum dimensional fault-free subcubes [12] method for tolerating two or more r faulty processors, r � 2. Oncethe faulty processors had been identi�ed, (n � t)-dimensional (1 � t � n) fault-freesubcubes could be used while 2n�2n�t�r normal processors obviously run idle in thisstrategy. Idle processors are denoted to be the dangling processors, which are normalbut not used for the fault-tolerant policy. The maximum dimensional fault-free sub-cubes strategy results in a tremendous underutilization of resources. For example, theresultant working system would be a 5-dimensional hypercube if one faulty processorexists in a 6-dimensional hypercube. This would reduce the performance almost 50%even though less than 2% of the system is faulty. A parallel sorting algorithm is thenapproached here that can tolerate multiple faults, improve the processors utilization,and provide low communication overhead without any hardware modi�cation.The faults in the proposed model here are considered to be permanent faults [11].The number of faulty processors is also assumed to be r � n � 1. A processorsurrounded by n faulty neighboring processors may exist if the number of faultyprocessors is r � n; it can then not send and receive messages to and from theothers. The locations of the faulty processors and links are also assumed to be knownbefore running the proposed fault-tolerant sorting algorithm. Some distributed faultdiagnosis algorithms [2] [5] exist which can be used in identifying the set of faultyprocessors and links by the fault-free processors. The assumption is reasonable sincethe o�-line diagnosis concept proposed by Banerjee [3] can be applied before runningthe proposed algorithm. The proposed development in an algorithm-based fault-tolerant sorting algorithm has been contributed for handling more than one faultyprocessor. The bitonic sorting algorithm [10] [15] is �rst indicated for being able- 2 -

to correctly perform sorting operations on hypercubes with one faulty processor. Apartition algorithm with time complexity O(rN) is then presented in order to tolerater � n � 1 faulty processors, where N = 2n. The purpose of this algorithm is topartition the original hypercube with minimum number of cutting dimensions into aset of subcubes such that each subcube has at most one faulty processor. The bitonicsorting algorithm can then be correctly applied in each subcube. In general, manydi�erent subcube partitions exist which will split the hypercube into di�erent sets ofsubcubes. Communication overhead exists among the subcubes for message-passingduring execution of the proposed sorting algorithm. Di�erent partitions will lead todi�erent communication overheads. One of the partitions will be selected here, suchthat the communication overhead is as less as possible. Each subcube is then viewedas a node and the bitonic-like sorting procedure being applied to these subcubes.The sorting result on hypercubes can, consequently, be obtained in the presence ofmultiple faults.The proposed algorithm can reduce more dangling processors than the maximumdimensional fault-free subcubes approach. In particular, if an n-dimensional hyper-cube has two faulty processors, the n-dimensional hypercube is partitioned into two(n� 1)-dimensional subcubes each having one faulty processor. Therefore, we do nothave any dangling processor. In the worst case, there at most N=4 dangling proces-sors exist when an n-dimensional hypercube has n � 1 faulty processors. It will stillhave better resources utilization than the maximum dimensional fault-free subcubesapproach by which the number of dangling processors is N=2 (in the best case) and is34N (in the worst case). We also implement the proposed algorithm on an NCUBE/7MIMD hypercube machine with 64 processors. The performance of the proposedfault-tolerant sorting algorithm is shown by simulation results to be better than thatof �nding the maximum dimensional fault-free subcube method [12].The rest of this paper is organized as follows. The bitonic sorting algorithm beingable to run correctly on hypercubes with one faulty processor will be indicated inSection 2. A partition algorithm for tolerating multiple faults with minimum numberof cutting dimensions such that each subcube will have exactly one faulty processoris proposed. A fault-tolerant sorting algorithm based on the partition algorithm ispresented in Section 3. The implementation and performance analysis of the proposedalgorithm are discussed in Section 4. The conclusions will �nally be presented inSection 5. - 3 -

2. Partition Algorithm on Faulty HypercubesIn this section, we �rst point out that the bitonic sorting algorithm can correctlywork on hypercubes with one faulty processor. To tolerate multiple faults, a partitionalgorithm with a minimum number of cutting dimensions is presented in Section 2.2for �nding a set of subcubes such that each subcube has at most one faulty processor.2.1 Sorting Operations on Single-Fault HypercubesAssume M >> N unsorted elements uniformly distributed to N processors inhypercubes exist. Some dummy keys (1) will be �lled in processors if the distributionof each processor is not uniform. By applying the bitonic sorting algorithm, all theM unsorted elements will be sorted on each processor of the hypercube Qn in theaddress order. The key concept of the bitonic sorting algorithm [10] [15] is recursivelyexecuting the comparison-exchange operations on each pair of sorted subcubes suchthat the �rst half elements are located in one subcube and the last half elementsare located in the other subcube. For example, an n-dimensional hypercube Qn canbe divided into two subcubes Qn�1 and Q0n�1 that one consists of processors Pi for0 � i � N2 � 1 and the other consists of the remaining processors Pj for N2 � j �N � 1. Assume that all the dM=2e elements in subcube Qn�1 (Q0n�1) are sorted inascending (descending) order. Each pair of processors Pi and Pj (j = i+ N2) will thenexecute the comparison-exchange operations as follows. Processor Pi (Pj) in Qn�1(Q0n�1) will send the �rst (last) half dM=(2N)e elements to its neighboring processorPj (Pi) and receive dM=(2N)e elements from Pj (Pi). Processor Pi (Pj) then comparesthe unsending dM=(2N)e elements with the receiving elements, reserves the smaller(larger) element in each comparison and sends the larger (smaller) element to Pj (Pi).The half smallest dM=2e elements will then be located in Qn�1 and the others will belocated in Q0n�1.The bitonic sorting algorithm can also actually work correctly on hypercube Qnwhen the faulty processor is P0. TheM elements can be uniformly distributed to N�1normal processors and treat the faulty processor P0 in Qn�1 as a dead node. Eachnormal processor has exactly dM=(N � 1)e elements. When each pair of processorsexecute the comparison-exchange operations, the corresponding processor of P0 justkeeps its dM=(N � 1)e elements without doing any operation. Assume that Qn�1 andQ0n�1 are now respectively sorted in ascending and descending orders after some steps- 4 -

of executing the bitonic sorting algorithm. Comparison-exchange operations need tobe done here such that the (N2 � 1)(d MN�1e) smallest elements are located in Qn�1and the (N2)(d MN�1e) largest elements are located in Q0n�1. The elements in PN2 areknown to be larger than the elements in the other N2 � 1 processors PN2 +1, PN2 +2, . . . ,and PN�1. If each processor Pi, 1 � i � N � 1, executes the comparison-exchangeoperations excepting the processor PN2 , all the �rst (N2 � 1)(d MN�1e) elements willstill be located in Qn�1 and the others will be located in Q0n�1. The bitonic sortingalgorithm can obviously work correctly on hypercubes with one faulty processor P0.If the location of faulty processor is not P0, its address may be logically set to be0 and then we reindex the other processors by using bit-wise exclusive-or operationon their actual binary addresses. Consequently, we can obtain the correct result onhypercubes with one faulty processor located in arbitrary address.2.2 The Partition AlgorithmThe bitonic sorting algorithm to tolerate one fault as described in Section 2.1 maybe applied when a hypercube Qn has only one faulty processor. If the number offaulty processors in Qn is 2 � r � n � 1, the proposed algorithm will partition thehypercube Qn into subcubes such that each one has at most one faulty processor. Forbalancing the workload of each subcube, we also determine a dangling processor ineach fault-free subcube. The smaller number of cutting dimensions will result in thefewer dangling processors. An optimal partition algorithm is then proposed in thissection for �nding the minimum number of cutting dimensions. Some terms will bede�ned before the description of the proposed algorithm.De�nition 1 : Single-fault subcube structureAn n-dimensional hypercube Qn consisting of 2n processors can be partitionedinto 2k subcubes, each consisting of 2n�k processors. If each subcube of the partitionedhypercube Qn has at most one faulty processor, we denote the partitioned hypercubeQn by the single-fault subcube structure F kn , where 0 � k � n� 2. 2A hypercube Q5 with 4 faulty processors can be partitioned into single-fault sub-cube structure F 35 as shown in Fig. 1. Consider a hypercube Qn with r faults for2 � r � n�1. All the possible selections of cutting dimensions can be represented bya cutting dimension tree Tn. A cutting dimension tree T5 for Q5 is shown in Fig. 2.- 5 -

Nodes in level i in tree T5 denote the ith selected cutting dimension, 1 � i � 5. The�rst cutting dimension can be selected from dimension 0 to dimension 4. Continuingto select the second cutting dimension will be proceeded if the selected dimensioncan not partition Q5 into F 15 . All the cutting dimension sequences that can partitionQ5 into single-fault subcube structure F k5 (1 � k � 3) can be obtained by using thedepth-�rst search. The total number of nodes in tree T5 is P5i=1C5i = 31.Let the address space of hypercube Qn be denoted by fun�1un�2 . . .u0g, forui 2 f0; 1g, 0 � i � n � 1. The Qn can be partitioned into two subcubes Qn�1along dimension d, where 0 � d � n � 1. The two partitioned subcubes then haveaddress space fun�1un�2 . . .ud . . .u0g and fun�1un�2 . . . �ud . . .u0g, where ud=1 and�ud=0, respectively. For checking whether the single-fault subcube structure F kn hasbeen obtained or not, we construct a checking tree T cn as follows. Each node in T cnrepresents a subcube and contains some faulty processors of Qn. A root of checkingtree T cn initially reserves all the faulty processors. When a cutting dimension d1 istraversed in Tn, the faulty processors of a node in T cn can be divided along dimensiond1 into two subcubes as its children. If the bit d1 of a faulty processor is 0 then putthe faulty processor in the left child of current node in T cn; else put it in the rightchild. When the current node of the checking tree T cn contains more than one faultyprocessor, the traversal of Tn continues along dimensions d2, d3, . . . , dk, 0 � k � n�2,until each of terminal nodes in T cn has at most one fault. A feasible solution (d1, d2,: : :, dk) that can partition Qn into F kn can be obtained. In fact, many feasible solu-tions exist. Let m be the minimum number of cutting dimensions in all the feasiblesolutions. These m cutting dimensions d1, d2, : : :, dm are collected into D. The Dis named the cutting dimension sequence, with the value ofm being de�ned asmincut.De�nition 2 : Cutting dimension sequence and mincutThe cutting dimension sequence D = (d1, d2, : : :, dm) consists of the m cuttingdimensions that can construct a single-fault subcube structure Fmn with minimumnumber of cutting dimensions when a hypercube Qn has r � n� 1 faulty processors.The value m is de�ned as mincut. 2Consider a Q4 with 3 faulty processors 0, 6, 9 as shown in Fig. 3(a). The cuttingdimension sequence D = (d1, d2) = (1, 3) can construct a single-fault subcube struc-ture F 24 as shown in Fig. 3(b). A checking tree T c4 is built as shown in Fig. 4. All- 6 -

the faulty processors are �rst put in the root of checking tree T c4 . The address spaceof Q4 is fu3u2u1u0g. When the �rst cutting dimension d1 = 1 is traversed in T4, Q4is partitioned into two Q3 along dimension 1. The faulty processors f0, 6, 9g will bedivided into two sets f0, 9g and f6g as children of root as shown in Fig. 4. The twoQ3 then have address spaces fu3u20u0g and fu3u21u0g, respectively. Since the leftchild of T c4 in Fig. 4 contains more than one fault, the cutting dimension d2 = 3 iscontinued to be traversed in T4 and each Q3 is then partitioned into two Q2 alongdimension 3. Each of the terminal nodes of the checking tree T c4 , as a result, onlyhas at most one faulty processor. A single-fault subcube structure F 24 is obtained byusing the cutting dimension sequence D = (d1, d2) = (1, 3).In general, many di�erent cutting dimension sequences which can partition the Qninto a single-fault subcube structure Fmn (under the same value of mincut m) exist.Let the cutting set 	 denote all the possible cutting dimension sequences. The issueof �nding the cutting set 	 is now addressed here. A cutting dimension tree Tn is�rst used. All possible cutting dimension sequences are contained in paths from rootto terminal nodes in Tn. A depth-�rst search is �rst performed on Tn. When eachnode labeled by dk is visited at depth k, each subcube Qn�k+1 is partitioned into twosubcubes Qn�k along dimension dk. The initial values of the mincut and the cuttingset 	 are respectively n and �. The current traversal will be cuto� if the depth k ofthe cutting dimension tree is larger than the current value of mincut. The checkingtree T cn may be used to check whether a cutting dimension sequence D = (d1, d2, : : :,dk) can construct a single-fault subcube structure F kn or not. If the answer is yes, thecutting set 	 and the mincut value will be modi�ed by the following rule: If the num-ber of cutting dimensions k is less than the current mincut value, then set 	 = fDgand mincut = k, else set 	 = 	 [fDg and the mincut value is the same as before.When all nodes of Tn are visited, the minimum value of mincut m and the cutting set	 = fD1, D2, . . .D�g can be obtained, where � is the number of cutting dimensionsequences. All the cutting dimension sequencesDi in 	 can partition the Qn into Fmn .The number of nodes visited in the worst case in tree Tn is Pni=1Cni = 2n�1 = N �1.When travelling each node of Tn, each faulty processor's address should be checked todetermine the faulty processor belong to left or right child of current node in T cn. Thetime complexity in determining the cutting set 	 is then O(rN), where r is numberof faulty processors and N = 2n. - 7 -

Example 1: Consider a Q5 with 4 faulty processors FP1, FP2, FP3, and FP4 whoseaddresses are respectively 00011, 00101, 10000, and 11000. The cutting dimensiontree T5 is constructed in Fig. 2. The cutting set 	 = fD1, D2, D3, D4, D5g = f(0,1, 3), (0, 2, 3), (1, 2, 3), (1, 3, 4), (2, 3, 4)g and the mincut value m = 3 will beobtained if all nodes of T5 are traversed in the depth-�rst search. Each of the cuttingdimension sequence in 	 can construct a single-fault subcube structure F 35 .In the next section, we will describe how to select one of the cutting dimensionsequence D� from the cutting set 	 = fD1, D2, . . . , D�g such that the communica-tion overhead for performing the proposed algorithm is as less as possible. A formalalgorithm for �nding the cutting set 	 and mincut value m is given in the following.The Partition Algorithm:Input: An n-dimensional hypercube Qn with r faulty processors, for 2 � r � n�1.Output: The mincut value and cutting set 	 = fD1, D2, . . .D�g.Step 1: Respectively set the initial value of mincut m and cutting set 	 to n and�.Step 2: Traverse cutting dimension tree Tn by using the depth-�rst searching methoduntil all nodes of Tn are visited. Perform Step 3 when each node in Tn isvisited.Step 3: The traversal is cuto� if the depth k of the current node is larger than thecurrent value of mincut. As soon as the node in depth k of Tn labeled bydk is visited, each subcube Qn�k+1 is partitioned into two subcubes Qn�kalong dimension dk. Use the checking tree T cn to check whether the currentcutting dimension sequence D = (d1, d2, : : :, dk) can partition the Qn intoa single fault-subcube structure F kn or not. If the answer is yes, the cuttingset 	 and the mincut value will be modi�ed by the following rule: Set 	= fDg and mincut = k if the number of cutting dimensions k is less thanthe current mincut value; else set 	 = 	 [fDg.The processor utilization in the proposed algorithm is better than the maximumdimensional fault-free subcubes approach. Assume that the number of faulty proces-sors r � n�1. The number of dangling processors in the proposed partition algorithm- 8 -

is shown to be less than N=4 as follows. In an n-dimensional hypercube Qn, each pro-cessor connects to n neighboring processors exactly. Our purpose is to �nd a Fmn . Afaulty processor in the worst case may connect n � 2 neighboring faulty processors.We will partition the Qn at most n � 2 times along n � 2 di�erent dimensions. TheQn will then be partitioned into F n�2n in which each subcube has 3 normal processorsand 1 faulty or dangling processor. Therefore, the processor utilization is at least34N in the worst case. When an n-dimensional hypercube has n � 1 faulty proces-sors, the processor utilization of the maximum fault-free subcubes approach is N=2(in the best case) and is N=4 (in the worst case). The proposed algorithm will havebetter processor utilization than the maximum fault-free subcubes approach. Notethat, the proposed partition algorithm is also suitable for faulty hypercube Qn withr � n faulty processors if no normal processor surrounded by n neighboring faultyprocessors exists.

- 9 -

3. Fault-Tolerant Sorting AlgorithmIn the previous section, we have described how to �nd all the cutting dimensionsequences that can partition Qn into Fmn with the minimum value m. In this section,we will choose one cutting dimension sequenceD� from 	 and determine the danglingprocessor in each fault-free subcube. The fault-tolerant sorting algorithm with pres-ence of multiple faults will �rst be presented before describing the heuristic methodof selecting the D� and determining the dangling processors.The notation of address for each subcube and processor used in our fault-tolerantalgorithm is �rst introduced. Assume that the selected cutting dimension sequence isD� = (d1, d2, : : :, dm). An n-dimensional hypercube Qn with address space fun�1un�2. . .u0g can be partitioned in order along dimensions d1, d2, : : :, and dm. By viewingeach partitioned subcube as a node, the m-dimensional cube consists of 2m nodeswith m-bit address space fvm�1vm�2 . . . v0g = fudmudm�1 . . .ud1g. The rest s = n�mbits form the address space fws�1ws�2 . . .w0g of the processors on each subcube. AQ5 with address space fu4u3u2u1u0g is shown in Figure 5. The cutting dimensionsequence D� = (0, 1, 3) will partition the Q5 into F 35 with subcube's address spacefv2v1v0g = fu3u1u0g and 2-dimensional address space fw1w0g = fu4u2g of processorsin each subcube.The proposed fault-tolerant sorting algorithm will now be described. Assume thatM unsorted elements exist. The partitioned hypercube Fmn consists of 2m subcubes,each having one faulty processor or dangling processor. Since the number of normalprocessors is N 0 = 2n � 2m = N � 2m, the M unsorted elements can be distributedto N 0 processors and each processor has dM=N 0e elements. For a partitioned single-fault subcube structure Fmn , we perform the reindex operation on each subcube suchthat the address of the faulty processor in each subcube is 0. Then, we perform thefollowing three sorting steps. Each processor �rst sorts its elements in ascending ordescending order according to its reindexed address is even or odd. Secondly, thebitonic sorting algorithm is applied in each subcube with one faulty processor suchthat the dM=2me elements are sorted in ascending or descending order depending onthe address vm�1vm�2 . . . v0 of subcube is even or odd, respectively. Each subcubecan �nally be viewed as a node and perform a bitonic-like sorting algorithm amongsubcubes such that the M elements are sorted on Qn in the subcubes' address order.Our fault-tolerant sorting algorithm is outlined as follows.- 10 -

Fault-Tolerant Sorting Algorithm:Input: A hypercube Qn contains M unsorted elements and a partitioned single-fault subcube structure Fmn . The address of each subcube in Fmn is vm�1vm�2. . . v0 and the address of each processor in each subcube is ws�1ws�2. . .w0.Output: Sorted elements located on Fmn in the subcubes' address order.Step 1: Perform the reindex operation on each subcube such that the address offaulty processor in each subcube is 0.Step 2: The host processor distributes each normal processor dM=N 0e elements,where N 0 = 2n � 2m. This is since 2m subcubes each exists which hasexactly one faulty processor.Step 3: Each processor sorts its elements by applying heapsort operations in ascend-ing or descending order according to the reindexed address of the processoris even or odd, respectively. Then the bitonic sorting algorithm is appliedon each subcube with one faulty processor such that the dM=2me elementsare sorted in ascending (descending) order if the address of subcube is even(odd).Step 4: For i = 0, 1, . . . , m - 1 do Steps 5 through 8.Step 5: For each subcube, let variable mask be equal to the value of bit vi+1 of thesubcube's address. Assume vm = 0.Step 6: For j = i, i - 1, . . . , 0 do Steps 7 and 8.Step 7: For each pair of neighboring subcubes in dimension j:(a) If vj = 0 (vj = 1) then each reindexed normal processor sends the �rst(last) dM=(2N 0)e elements of its subsequence to its corresponding reindexednormal processor.(b) If mask = vj (mask 6= vj), each processor of subcubes compares the un-sending elements with the receiving elements, reserves the smaller (larger)element in each comparison and sends the larger (smaller) to its correspond-ing processor. - 11 -

(c) Each processor merges the two ordered subsequences in ascending or de-scending order according to the reindexed address of processor is even orodd, respectively.Step 8: Applying the bitonic sorting algorithm on each subcube with one faultyprocessor, the dM=2me elements are sorted in ascending (descending) orderif vj�1 = mask (vj�1 6= mask). Assume v�1 = 0.For example, consider a Q5 with 4 faulty processors as described in Example 1.The selected cutting dimension sequence D� = (0, 1, 3) will partition the Q5 into F 35 .We determine 4 dangling processors, perform the reindex operation on each subcube,and distribute 47 unsorted elements to reindexed normal processors as shown in Figure6(a). By applying step 3 of the proposed algorithm, each subcube sorts the assigned6 unsorted elements in ascending (descending) order if the subcube's address is even(odd) as shown in Figure 6(b). In step 4, the index values of i running on steps 5through 8 are 0, 1, and 2. When i = 0 and j = 0, the result of executing steps 7(a)and 7(b) is shown in Figure 6(c). Each processor then performs the merge operationof step 7(c). After executing step 8 of the proposed algorithm with i = 0 and j =0, the temporal result is shown in Figure 6(d). Similarly, when i = 1 and j = 1, theexecution results of steps 7 and 8 are respectively shown in Figure 6(e) and 6(f). Theresults of executing steps 7 and 8 with i = 1, j = 0 are shown in Figure 6(g) and6(h), respectively. Continually performing the steps 7 and 8, all the elements can besorted as shown in Figure 6(i).In the cost estimation given below, symbol ts=r denotes the cost of sending orreceiving an element between two neighboring processors; symbol tc denotes the timecost of comparing a pair of elements. The derivation of total time cost T of theproposed fault-tolerant sorting algorithm is described as follows. The worst case oftime cost for heapsort operations in step 3 is [(dMN 0 e - 1)logdMN 0 e + 1] tc. The bitonicsorting operations [15] perform s(s+3)2 loops, each with time cost [dMN 0ets=r + (d 3M2N 0 e -1)tc]. The total time cost for step 3 is then[(dMN 0 e - 1)logdMN 0 e + 1]tc + s(s+3)2 [dMN 0 ets=r + (d 3M2N 0e - 1)tc].The hops between two corresponding reindexed normal processors in step 7(a) are atmost s + 1 since they are located in the s-dimensional neighboring subcubes. Thetime cost in the worst case for steps 7(a) and 7(b) are respectively (s + 1)d M2N 0 ets=rand (s+1)d M2N 0 ets=r + (d M2N 0 e - 1)tc. The time cost for merge operation in step 7(c) is- 12 -

(dMN 0 e - 1)tc. In step 8, the bitonic sorting algorithm performs s(s+3)2 loops, each withtime cost [dMN 0 ets=r + (d 3M2N 0e - 1)tc]. Steps 4 and 6 of the proposed algorithm performm(m+3)2 loops of steps 7 and 8. The total time cost T of the proposed fault-tolerantsorting algorithm in the worst case is thenT = [(dMN 0 e - 1)logd MN 0 e + 1]tc + s(s+3)2 [dMN 0ets=r + (d 3M2N 0e - 1)tc] +m(m+3)2 f(s+ 1)dMN 0 ets=r + (d M2N 0 e - 1)tc + (dMN 0e - 1)tc +s(s+3)2 [dMN 0 ets=r + (d 3M2N 0e - 1)tc]g= O(max(dMN 0 elogdMN 0 e, m2s2dMN 0 e)).In the previous section, we have the time costO(rN) for the partitioning algorithm.The total cost for sorting M elements on n-dimensional hypercube is T + O(rN).When the number of unsorted elements is large enough (M >> N), the time cost ofour algorithm is closed to O(dMN 0 elogdMN 0 e).The above algorithm is based upon the assumption that the cutting dimensionsequence D� has been selected from 	, with the dangling processor having beendetermined in each fault-free subcube. A heuristic method for selecting the D� anddetermining the dangling processors is proposed in the following. Consider each pair ofneighboring subcubes Qm and Q0m. Let faulty processors FP and FP 0 exist and havethe same local reindexed addresses, being respectively located in Qm and Q0m. Eachpair of normal processors P and P 0, which have the same address, located in respectivesubcubes Qm and Q0m will execute the comparison-exchange operations in the bitonic-like sorting algorithm. The original address of each normal processor will be changedsince all the address of the processors have been reindexed. Processors P and P 0may then not be neighboring after performing the reindex operation and need extra-communication overhead for message-passing. The extra-communication overheadbetween processors P and P 0 is the same as the Hamming distance of their respectivefaulty processors FP and FP 0. When Qm and Q0m perform the comparison-exchangeoperations along a �xed dimension i (for 0 � i � m � 1), the extra-communicationoverhead hi can be measured by the Hamming distance of the s-bit addresses of faultyprocessors FP and FP 0 hi = HD(FP;FP 0):The extra-communication overhead hi of one pair Qm and Q0m may be di�erent fromthe other pairs. Thus, the max function is taken here to estimate the turnaroundtime. The total extra-communication overhead can be estimated by Pm�1i=0 max(hi)- 13 -

since the bitonic-like sorting algorithm performs the comparison-exchange operationsfrom dimensions 0 to m � 1. The selected D� should satisfy the following minmaxfunction. min0����m�1Xi=0 max(hi): (1)A dangling processor next needs to be determined in each fault-free subcube suchthat the workload for each subcube is balanced. The dangling processor in eachfault-free subcube may be determined by the following heuristic rule: each fault-freesubcube determines a dangling processor whose address ws�1ws�2. . .w0 is the same asthe faulty processors' addresses which appear most frequency in the faulty subcubes.The communication among these faulty processors and dangling processors can thenbe discarded, with the purpose of the low extra-communication overhead being ableto be achieved.Example 2: Cutting dimension sequence D1 = (0, 1, 3) is selected here in Example1. The faulty processors FP1, FP2, FP3, and FP4 in F 35 are located in subcubeswith respective addresses 011, 001, 000, and 100 as shown in Figure 5. Three pairsof faulty processors exist, (FP1, FP2), (FP2, FP3), and (FP3, FP4) being located onneighboring subcubes and their respective Hamming distances are HD(011, 001) =1, HD(001, 000) = 1, and HD(000, 100) = 1. According to formula (1), the totalextra-communication cost under the selection of D1 = (0, 1, 3) is P2i=0 max(hi) =HD(01, 10) + HD(00, 01) + HD(10, 10) = 3. The selection of a cutting dimensionsequence D1 = (0, 1, 3) with communication overhead 3 is depicted in Figure 5. Byselecting the other cutting dimension sequences D2 = (0, 2, 3), D3 = (1, 2, 3), D4 =(1, 3, 4), and D5 = (2, 3, 4), their respective extra-communication cost can similarlybe obtained as 3, 4, 3, and 3. We may select D� = D1 = (0, 1, 3) here. A danglingprocessor in each fault-free subcube is then determined. Processor with address 10 istreated as dangling processor in each fault-free subcube since the addresses of faultyprocessors w1w0 = 10 appears most frequency. The dangling processors' addresses 18,25, 26 and 27 have �nally been obtained by combining the 3-bit address v2v1v0 and2-bit address w1w0. - 14 -

4. Implementation and Performance AnalysisThe implementation of the proposed fault-tolerant sorting algorithm on an NCUBE/7 MIMD hypercube machine which consists of 64 processors each contains 512 Kbytes of local memory will be described in this section. Implementation here logicallytreats some processors as faulty nodes and does not assign any unsorted element tothem; the faulty nodes, as a result, can be run idle. The fault model can be classi�edinto two types. The most serious fault would be one that completely destroys aprocessor and all links incident to it. Hastad [9] called such faults total. A lessserious fault, name partial fault [9], would be one that destroys just the computationalportion of a processor leaving the communication portion of the processor intact aswell as the incident links. The data routing in NCUBE/7 is completely determinedby the operating system VERTEX. Since the VERTEX may pass messages throughthe links of faulty processors, simulation is constrained in faults partial property. Thefaults total property can be achieved by rewriting a router to handle the fault-tolerantrouting of message-passing [7]. The execution time will be more than the partial faultif the cube Qn has the fault total property.Assume that an n-dimensional hypercube has r faulty processors, where 1 � r �n � 1. An optimal partition algorithm have been proposed in Section 2 which canpartition the hypercube Qn into a single-fault subcube structure Fmn with the mini-mum number of cuts. The proposed algorithm determines some dangling processorsfor balancing the workload of each subcube. The number of dangling processors isless than N=4 in the worst case. The relative locations of faulty processors will a�ectthe value of mincut. For a �xed dimension n and a number of faulty processors r,the addresses of r faulty processors are randomly generated on hypercubes Qn 10000times. The percentages of all possible mincut values under �xed n and r, where3 � n � 6 and 0 � r � n � 1, are shown in Table 1. For instance, when n = 6and r = 5, 93:85% cases of Qn exist which can be partitioned into F 36 (mincut valuem=3) and 6:15% cases exist which can be partitioned into F 46 (mincut value m=4).The smaller the value of mincut is, the fewer the dangling processors will generallybe determined. This indicates that our partition algorithm is biased to small numberof dangling processors in 93:85% cases.The percentages of processor utilization in proposed algorithm and in the maxi-mum dimensional fault-free subcubes method can be compared in Table 2. The value- 15 -

of percentage is evaluated by the ratio of total number of normal processors in originalcube to total number of actually running processors. For instance, when n = 6 andr = 4, our algorithm will partition the Q6 into F 26 in the best case (mincut value m= 2) and no dangling processor exists. Thus, the percentage of processor utilizationis then (26 � 4)=(26 � 4) = 100%. Q6 in the worst case should be partitioned into F 36(m = 3), depending on the locations of faulty processors. The number of danglingprocessors is 4 and the percentage of processor utilization is (26 � 4 � 4)=(26 � 4) =93:3%. The percentage of processor utilization is 53:3% in the best case and is 26:6%in the worst case by applying the maximum dimensional fault-free subcubes method.The proposed algorithm, in comparison, is better than the maximum dimensionalfault-free subcubes method in resource utilization.The enhancement of processor utilization will reduce the execution time for sort-ing operations on hypercubes. The proposed algorithm has been simulated on then-dimensional hypercubes for n= 3, 4, 5, and 6. In our simulation, the number offaulty processors is 0 � r � n�1 and the addresses of faulty processors are randomlygenerated on each of 10000 simulations for a �xed n and r. The simulation resultof our algorithm is depicted in Figure 7 by thin lines and the maximum dimensionalfault-free subcubes method, i.e., r = 0 by thick lines. In Figure 7(a), the number ofdata elements is ranged from 3:2 � 103 to 3:2 � 104. The execution time of our algo-rithm in Q6 with r = 1 or r = 2 is shown to be less than the bitonic sorting algorithmrunning on the fault-free subcube Q5 (n = 5). The execution time of our algorithmis also less than the bitonic sorting algorithm running on the fault-free subcube Q4(n = 4) when n = 6 and r = 3, 4, or 5. If a hypercube Q6 has two faulty processors,the performance of the proposed algorithm is then better than the maximum dimen-sional fault-free subcubes method in both its best case n = 5 and worst case n = 4.The maximum dimensional fault-free subcubes method in the best case can utilizeQ5. Although the execution time of our algorithm running on Q6 with r = 3, 4, or 5is more than the execution time of bitonic sorting algorithm running on the fault-freesubcube Q5, the probability that Q5 can be utilized is small. The execution time ofthe proposed algorithm running on Q5 with r = 1 or 2 being less than the fault-freesubcube Q4 is illustrated in Figure 7(b). The execution time of n = 5 and r = 3or 4 is also less than the fault-free hypercube Q3. In Example 1, there are 4 faultyprocessors with addresses 3, 5, 16, and 24 in Q5. The maximum fault-free subcubeable to be utilized is Q3. The total time cost of the proposed sorting algorithm for- 16 -

n = 5 and r = 4 is less than the bitonic sorting algorithm running on Q3. Similarly,Figures 7(c) and 7(d) display the execution time of the proposed algorithm with n =3and 4, respectively. The performance of the proposed fault-tolerant sorting algorithmrunning on hypercubes shown by simulation results is better than the parallel sortingalgorithms running on the maximum fault-free subcubes.5. ConclusionsAn algorithm-based fault-tolerant sorting algorithm on hypercube multicomput-ers, without any hardware modi�cation, has been proposed. The bitonic sortingalgorithm has �rst been indicated to be able to perform sorting operations correctlyon the hypercubes with one faulty processor. As the number of faulty processors was1 � r � n�1, a partition algorithm in partitioning a hypercube Qn into subcubes hasbeen proposed here, such that each subcube contains at most one faulty processor.The proposed partition algorithm has found the mincut value m and cutting set 	.Heuristic methods for selecting one of the partitions in 	 has been suggested underthe consideration of little communication overhead and determining the dangling pro-cessor in each fault-free subcube such that the workload of each subcube has beenbalanced. A fault-tolerant sorting algorithm based on the partition algorithm has alsobeen proposed that applies the bitonic sorting algorithm to each subcube and sortsthe elements on faulty hypercubes. Our algorithm has �nally been implemented on anNCUBE/7 MIMD hypercube machine with 64 processors. The execution results hasshown that the performance of our fault-tolerant sorting algorithm on hypercubes hasbeen better than the parallel sorting algorithms running on the maximum fault-freesubcubes.
- 17 -

References[1] M. S. Alam and R. G. Melhem, "An E�cient Modular Spare Allocation Schemeand Its Application to Fault Tolerant Binary Hypercubes," IEEE Transactionson Parallel and Distributed Systems, Vol. 2, pp. 117-126, Jan. 1991.[2] J. R. Armstrong and F. G. Gray, "Fault Diagnosis in a Boolean n Cube Arrayof Microprocessors," IEEE Transactions on Computers, Vol. C-30, No. 8, pp.587-590, Aug. 1981.[3] P. Banerjee and J. T. Rahmeh, "Algorithm-Based Fault Tolerance on a Hyper-cube Multiprocessor," IEEE Transactions on Computers, Vol. 39, No. 9, pp.1132-1145, Sep. 1990.[4] J. Berntsen, "Communication E�cient Matrix Multiplication on Hypercubes,"Parallel Computing, No. 12, pp. 335-342, 1989.[5] Kabekode V. S. Bhat, "An E�cient Approach for Fault Diagnosis in a Booleann-Cube Array of Microprocessors," IEEE Transactions on Computers, Vol. 32,No. 11, pp. 1070-1071, Nov. 1983.[6] S. C. Chau and A. L. Liestman, "A Proposal for a Fault-Tolerance Binary Hy-percube Architecture," Digest of papers of the International Symposium Fault-Tolerant Computing, The Computer Society, IEEE, pp. 323-330, 1989.[7] M. S. Chen and K. G. Shin, "Adaptive Fault-Tolerant Routing in HypercubeMulticomputers," IEEE Transactions on Computers, Vol. 39, No. 12, pp. 1406-1416, Dec. 1990.[8] A. C. Elster, M. �U. Uyar, and A. P. Reeves, "Fault-Tolerant Matrix Operationson Hypercube Multiprocessors," International Conference on Parallel Process-ing, Vol. 3, pp. 169-176, 1989.[9] J. Hastad, T. Leighton, and M. Newman, "Recon�guring a Hypercube in thePresence of Faults," Proceedings of the 19th Annual ACM Symposium on Theoryof Computing, pp. 274-284, 1987.[10] S. L. Johnsson, "Combining Parallel and Sequential Sorting on a Boolean n-Cube," International Conference on Parallel Processing, pp. 21-24, 1984.- 18 -

[11] V. P. Nelson, "Fault-Tolerant Computing: Fundamental Concepts," Computer,pp. 19-25, Jul. 1990.[12] F. �Ozg�uner and C. Aykanat, "A Recon�guration Algorithm For Fault Tolerancein a Hypercube Multiprocessor," Information Processing Letters, Vol. 29, No.5, pp. 247-254, Nov. 1988.[13] D. A. Rennels, "On Implementing Fault-Tolerance in Binary Hypercubes," Di-gest of papers of the International Symposium Fault-Tolerant Computing, TheComputer Society, IEEE, pp. 344-349, 1986.[14] Y. Saad and M. H. Schultz, "Topological Properties of Hypercube," IEEE Trans-actions on Computers, Vol. 37, No. 7, pp. 867-872, Jul. 1988.[15] S. R. Seidel and L. R. Ziegler, "Sorting on Hypercubes," Proceeding of the SecondConference on Hypercube Multiprocessors, pp. 285-291, 1987.[16] C. L. Seitz, "The Cosmic Cube," Communication of the ACM, Vol. 28, No. 1,pp. 22-33, Jan. 1985.[17] J. P. Sheu, C. L. Wu, and G. H. Chen, "Selection of the First k Largest Processesin Hypercubes," Parallel Computing, No. 11, pp. 381-384, 1989.[18] J. P. Sheu, N. L. Kuo, and G. H. Chen, "Graph Search Algorithms and Maxi-mumBipartite Matching Algorithm on the Hypercube Network Model," ParallelComputing, No. 13, pp. 245-251, 1990.[19] S. B. Tien and C. S. Raghavendra, "Simulation of SIMD Algorithms on FaultyHypercubes," International Conference on Parallel Processing, Vol. 1, pp. 716-717, 1991.
- 19 -

