Fault-Tolerant Sorting Algorithm on Hypercube
Multicomputers

Jang-Ping Sheu, Yuh-Shyan Chen, and Chih-Yung Chang

Department of Electrical Engineering, National Central
University, Chung-Li 32054, Taiwan, R.O.C.

sheujp@ncu.dnet.ncu.edu.tw

Correspondence Address: Prof. Jang-Ping Sheu
Department of Electrical Engineering, National Central University

Chung-Li 32054, Taiwan, R.O.C.

April 1, 1992

Abstract

In this paper, algorithmic fault-tolerant techniques are introduced for sorting al-
gorithms on n-dimensional hypercube multicomputers. We propose a fault-tolerant
sorting algorithm that can tolerate up n — 1 faulty processors. First, we indicate that
the bitonic sorting algorithm can perform sorting operations correctly on the hyper-
cubes with one faulty processor. In order to tolerate up r < n — 1 faulty processors,
a partition algorithm is presented. The algorithm partitions the original hypercube
with minimum number of cuts into a set of subcubes such that each subcube has
at most one faulty processor. The bitonic sorting algorithm can then be applied in
each subcube correctly. Finally, each subcube is viewed as a node and a bitonic-like
sorting procedure is applied to the subcubes with little communication overhead. Be-
sides, we implement our algorithm on NCUBE/7 MIMD hypercube machines with 64
processors. The simulation results show that the performance of our fault-tolerant
sorting algorithm on hypercubes is better than the approach for finding the maximal

fault-free subcubes.

Keyword: Bitonic sorting algorithm, fault tolerance, hypercubes, parallel processing,

parallel sorting algorithms.

1. Introduction

Hypercube multicomputers [16] have become commercially available in the past
few years due to its high degree of connectivity, symmetry and low degree of diame-
ter [14]. A great many of scientific algorithms directly developed for the hypercubes
have been more efficient than mapping onto other parallel architectures or embed-
ding to other topologies, such as sorting algorithms [15], matrix multiplication [4],
network flow problems [17], and graph theories [18]. As the n-dimensional hypercube
multicomputers interconnect exactly N = 2" processors, system performances will be
seriously reduced and system resources will be severely consumed when faulty proces-
sors/links occur in the hypercube multicomputer. Fault tolerance has then been very
important in such a large distributed computing environment for continuing opera-
tions of the hypercube multicomputers after failure of one or more processors/links.
Efficient sorting algorithms have generally been the fundamental components and fac-
tors of many scientific algorithms. Designing a fault-tolerant sorting algorithm that
can tolerate n — 1 faulty processors on the n-dimensional hypercube multicomputers
is, consequently, the purpose of this study.

Most of the recently proposed fault-tolerant schemes address the issue of recon-
figuration once the faulty processors are identified [1] [3] [6] [8] [12] [13]. The recon-
figuration approaches may comprise hardware and software strategies. The hardware
reconfiguration strategy suggests a new fault-tolerant hypercube architecture in ex-
pectation of high availability and error-free computations. The key concept of the
scheme is in employing redundant spare processors for serving a number of normal
processors; each of the spare processors, as a result, can replace any detected faulty
processor. The use of hardware switches in tolerating faults on hypercubes has first
been suggested by Rennels [13]. Chau [6] recently presented a fault-tolerant recon-
figuration scheme for hypercubes. The scheme can achieve the same reliability as
Rennels” by using more decoupling switches and fewer spare processors. However,
Chau’s scheme takes a longer time than Rennels’” in reconfiguring the environment
of hypercubes. Alam [1] also proposed an efficient modular spare allocation method
using the same number of spare processors and less switches for achieving the same re-
liability as Chau’s scheme. The module replacement strategy has restored the system
to full operations but requires redundant modules which are not used for normal op-

erations. Such a strategy then has a serious shortcoming of high hardware complexity

and low processors utilization.

Some researchers in software reconfiguration strategy have exerted themselves to
researching fault-tolerant algorithms on hypercubes with one faulty processor [8]. This
has been done under the considerations of optimally redistributing the load for each
processor, minimizing the effect on the normal processors, and maintaining the low
communication overhead. Elster [8] designed fault-tolerant matrix operations on the
hypercube multicomputers. The system, however, could only tolerate one faulty pro-
cessor. The reconfiguration of the fault-tolerant algorithm for handling more than one
faulty processor or link on hypercube multicomputers has, up to date, been reduced
to finding a subset of fault-free processors that is still connected by the hypercube
connection of a lower dimension. Ozgﬁner proposed the mazimum dimensional fault-
free subcubes [12] method for tolerating two or more r faulty processors, r > 2. Once
the faulty processors had been identified, (n — t)-dimensional (1 < ¢t < n) fault-free
subcubes could be used while 2* — 2"~ —r normal processors obviously run idle in this
strategy. Idle processors are denoted to be the dangling processors, which are normal
but not used for the fault-tolerant policy. The maximum dimensional fault-free sub-
cubes strategy results in a tremendous underutilization of resources. For example, the
resultant working system would be a 5-dimensional hypercube if one faulty processor
exists in a 6-dimensional hypercube. This would reduce the performance almost 50%
even though less than 2% of the system is faulty. A parallel sorting algorithm is then
approached here that can tolerate multiple faults, improve the processors utilization,
and provide low communication overhead without any hardware modification.

The faults in the proposed model here are considered to be permanent faults [11].
The number of faulty processors is also assumed to be r < n — 1. A processor
surrounded by n faulty neighboring processors may exist if the number of faulty
processors is r > n; it can then not send and receive messages to and from the
others. The locations of the faulty processors and links are also assumed to be known
before running the proposed fault-tolerant sorting algorithm. Some distributed fault
diagnosis algorithms [2] [5] exist which can be used in identifying the set of faulty
processors and links by the fault-free processors. The assumption is reasonable since
the off-line diagnosis concept proposed by Banerjee [3] can be applied before running
the proposed algorithm. The proposed development in an algorithm-based fault-
tolerant sorting algorithm has been contributed for handling more than one faulty

processor. The bitonic sorting algorithm [10] [15] is first indicated for being able

_9 .

to correctly perform sorting operations on hypercubes with one faulty processor. A
partition algorithm with time complexity O(rN) is then presented in order to tolerate
r < n — 1 faulty processors, where N = 2". The purpose of this algorithm is to
partition the original hypercube with minimum number of cutting dimensions into a
set of subcubes such that each subcube has at most one faulty processor. The bitonic
sorting algorithm can then be correctly applied in each subcube. In general, many
different subcube partitions exist which will split the hypercube into different sets of
subcubes. Communication overhead exists among the subcubes for message-passing
during execution of the proposed sorting algorithm. Different partitions will lead to
different communication overheads. One of the partitions will be selected here, such
that the communication overhead is as less as possible. Fach subcube is then viewed
as a node and the bitonic-like sorting procedure being applied to these subcubes.
The sorting result on hypercubes can, consequently, be obtained in the presence of
multiple faults.

The proposed algorithm can reduce more dangling processors than the maximum
dimensional fault-free subcubes approach. In particular, if an n-dimensional hyper-
cube has two faulty processors, the n-dimensional hypercube is partitioned into two
(n — 1)-dimensional subcubes each having one faulty processor. Therefore, we do not
have any dangling processor. In the worst case, there at most N/4 dangling proces-
sors exist when an n-dimensional hypercube has n — 1 faulty processors. It will still
have better resources utilization than the maximum dimensional fault-free subcubes
approach by which the number of dangling processors is N/2 (in the best case) and is
2N (in the worst case). We also implement the proposed algorithm on an NCUBE/7
MIMD hypercube machine with 64 processors. The performance of the proposed
fault-tolerant sorting algorithm is shown by simulation results to be better than that
of finding the maximum dimensional fault-free subcube method [12].

The rest of this paper is organized as follows. The bitonic sorting algorithm being
able to run correctly on hypercubes with one faulty processor will be indicated in
Section 2. A partition algorithm for tolerating multiple faults with minimum number
of cutting dimensions such that each subcube will have exactly one faulty processor
is proposed. A fault-tolerant sorting algorithm based on the partition algorithm is
presented in Section 3. The implementation and performance analysis of the proposed
algorithm are discussed in Section 4. The conclusions will finally be presented in

Section 5.

2. Partition Algorithm on Faulty Hypercubes

In this section, we first point out that the bitonic sorting algorithm can correctly
work on hypercubes with one faulty processor. To tolerate multiple faults, a partition
algorithm with a minimum number of cutting dimensions is presented in Section 2.2

for finding a set of subcubes such that each subcube has at most one faulty processor.

2.1 Sorting Operations on Single-Fault Hypercubes

Assume M >> N unsorted elements uniformly distributed to N processors in
hypercubes exist. Some dummy keys (oo) will be filled in processors if the distribution
of each processor is not uniform. By applying the bitonic sorting algorithm, all the
M unsorted elements will be sorted on each processor of the hypercube @), in the
address order. The key concept of the bitonic sorting algorithm [10] [15] is recursively
executing the comparison-exchange operations on each pair of sorted subcubes such
that the first half elements are located in one subcube and the last half elements
are located in the other subcube. For example, an n-dimensional hypercube @),, can
be divided into two subcubes Q,_; and Q. _, that one consists of processors P; for
0 << % — 1 and the other consists of the remaining processors P; for % <3<
N — 1. Assume that all the [M/2] elements in subcube Q,_; (Q._,) are sorted in
ascending (descending) order. Each pair of processors P, and P; (j =1+ %) will then
execute the comparison-exchange operations as follows. Processor P, (FP;) in Q-1
(Q.,_,) will send the first (last) half [M/(2N)] elements to its neighboring processor
P; (P;) and receive [M/(2N)] elements from P; (P;). Processor P; (P;) then compares
the unsending [M/(2N)] elements with the receiving elements, reserves the smaller
(larger) element in each comparison and sends the larger (smaller) element to P; (F;).
The half smallest [M/2] elements will then be located in @),,—; and the others will be
located in Q' _,.

The bitonic sorting algorithm can also actually work correctly on hypercube @),
when the faulty processor is Fy. The M elements can be uniformly distributed to N —1
normal processors and treat the faulty processor Fy in (),,_; as a dead node. Each
normal processor has exactly [M/(N — 1)] elements. When each pair of processors
execute the comparison-exchange operations, the corresponding processor of P just
keeps its [M/(N — 1)] elements without doing any operation. Assume that ¢),,—; and

'
(),,_, are now respectively sorted in ascending and descending orders after some steps

of executing the bitonic sorting algorithm. Comparison-exchange operations need to

be done here such that the (% — 1)([%}) smallest elements are located in Q,_;

and the (£)([2.]) largest elements are located in @),_;. The elements in Py are
known to be larger than the elements in the other % — 1 processors P%H? P%-I—?? ey
and Py_;. If each processor P;; 1 <1 < N — 1, executes the comparison-exchange
operations excepting the processor P%, all the first (% — 1)([%}) elements will
still be located in Q,_; and the others will be located in Q' _,. The bitonic sorting
algorithm can obviously work correctly on hypercubes with one faulty processor Fj.
If the location of faulty processor is not Fy, its address may be logically set to be
0 and then we reindex the other processors by using bit-wise exclusive-or operation

on their actual binary addresses. Consequently, we can obtain the correct result on

hypercubes with one faulty processor located in arbitrary address.

2.2 The Partition Algorithm

The bitonic sorting algorithm to tolerate one fault as described in Section 2.1 may
be applied when a hypercube (), has only one faulty processor. If the number of
faulty processors in @), is 2 < r < n — 1, the proposed algorithm will partition the
hypercube (), into subcubes such that each one has at most one faulty processor. For
balancing the workload of each subcube, we also determine a dangling processor in
each fault-free subcube. The smaller number of cutting dimensions will result in the
fewer dangling processors. An optimal partition algorithm is then proposed in this
section for finding the minimum number of cutting dimensions. Some terms will be

defined before the description of the proposed algorithm.

Definition 1 : Single-fault subcube structure

An n-dimensional hypercube (), consisting of 2" processors can be partitioned
into 2* subcubes, each consisting of 2"~* processors. If each subcube of the partitioned
hypercube (), has at most one faulty processor, we denote the partitioned hypercube
Q.. by the single-fault subcube structure F* where 0 <k <n — 2.

O

A hypercube ()5 with 4 faulty processors can be partitioned into single-fault sub-
cube structure F; as shown in Fig. 1. Consider a hypercube @, with r faults for
2 <r <n-—1. All the possible selections of cutting dimensions can be represented by

a cutting dimension tree T,,. A cutting dimension tree 75 for ()5 is shown in Fig. 2.

-5-

Nodes in level ¢ in tree T5 denote the ith selected cutting dimension, 1 <: < 5. The
first cutting dimension can be selected from dimension 0 to dimension 4. Continuing
to select the second cutting dimension will be proceeded if the selected dimension
can not partition Qs into Fy. All the cutting dimension sequences that can partition
Qs into single-fault subcube structure F¥ (1 < k < 3) can be obtained by using the
depth-first search. The total number of nodes in tree T is Yo_, C? = 31.

Let the address space of hypercube @), be denoted by {w,_ju,—2 ...up}, for
u; € {0,1}, 0 <@ < n —1. The @, can be partitioned into two subcubes @), _;
along dimension d, where 0 < d < n — 1. The two partitioned subcubes then have
address space {u,_1u,—2 ... ug ... ug} and {u,_1Uy_2 ... Uy ... ug}, where uz=1 and
u,=0, respectively. For checking whether the single-fault subcube structure F* has
been obtained or not, we construct a checking tree T as follows. Each node in T
represents a subcube and contains some faulty processors of (J,,. A root of checking
tree T initially reserves all the faulty processors. When a cutting dimension d; is
traversed in T,,, the faulty processors of a node in T'¢ can be divided along dimension
dy into two subcubes as its children. If the bit d; of a faulty processor is 0 then put
the faulty processor in the left child of current node in T; else put it in the right
child. When the current node of the checking tree T)Y contains more than one faulty
processor, the traversal of T}, continues along dimensions ds, ds, ..., d;, 0 < k < n-—2,
until each of terminal nodes in T/ has at most one fault. A feasible solution (dy, d,
..., dy,) that can partition Q,, into F’*¥ can be obtained. In fact, many feasible solu-
tions exist. Let m be the minimum number of cutting dimensions in all the feasible
solutions. These m cutting dimensions dy, ds, ..., d,, are collected into D. The D

is named the cutting dimension sequence, with the value of m being defined as mincut.

Definition 2 : Cutting dimension sequence and mincut

The cutting dimension sequence D = (dy, d, ..., dy) consists of the m cutting
dimensions that can construct a single-fault subcube structure F* with minimum
number of cutting dimensions when a hypercube (), has r < n — 1 faulty processors.
The value m is defined as mincut.

O
Consider a Q4 with 3 faulty processors 0, 6, 9 as shown in Fig. 3(a). The cutting
dimension sequence D = (dy, d3) = (1, 3) can construct a single-fault subcube struc-

ture F} as shown in Fig. 3(b). A checking tree Ty is built as shown in Fig. 4. All

-6 -

the faulty processors are first put in the root of checking tree Ty. The address space
of Q4 is {uzusuiug}. When the first cutting dimension d; = 1 is traversed in Ty, (4
is partitioned into two)3 along dimension 1. The faulty processors {0, 6, 9} will be
divided into two sets {0, 9} and {6} as children of root as shown in Fig. 4. The two
()5 then have address spaces {uzus0ug} and {uzuslug}, respectively. Since the left
child of T§ in Fig. 4 contains more than one fault, the cutting dimension dy = 3 is
continued to be traversed in T and each ()3 is then partitioned into two () along
dimension 3. Each of the terminal nodes of the checking tree T}, as a result, only
has at most one faulty processor. A single-fault subcube structure F} is obtained by
using the cutting dimension sequence D = (dy, dz) = (1, 3).

In general, many different cutting dimension sequences which can partition the),
into a single-fault subcube structure F* (under the same value of mincut m) exist.
Let the cutting set U denote all the possible cutting dimension sequences. The issue
of finding the cutting set ¥ is now addressed here. A cutting dimension tree T, is
first used. All possible cutting dimension sequences are contained in paths from root
to terminal nodes in T,,. A depth-first search is first performed on 7,. When each
node labeled by dj, is visited at depth k., each subcube @),,_x41 1s partitioned into two
subcubes @),,_; along dimension dj. The initial values of the mincut and the cutting
set U are respectively n and ¢. The current traversal will be cutoff if the depth & of
the cutting dimension tree is larger than the current value of mincut. The checking
tree T may be used to check whether a cutting dimension sequence D = (dy, da, ...,
dy,) can construct a single-fault subcube structure F* or not. If the answer is yes, the
cutting set W and the mincut value will be modified by the following rule: If the num-
ber of cutting dimensions k is less than the current mincut value, then set ¥ = {D}
and mincut = k, else set W = U U {D} and the mincut value is the same as before.
When all nodes of T}, are visited, the minimum value of mincut m and the cutting set
U = {Dy, Dy, ...D,} can be obtained, where « is the number of cutting dimension
sequences. All the cutting dimension sequences D; in ¥ can partition the), into F".
The number of nodes visited in the worst case in tree T}, is 3, O =2"—1 = N —1.
When travelling each node of T},, each faulty processor’s address should be checked to
determine the faulty processor belong to left or right child of current node in T'c. The
time complexity in determining the cutting set ¥ is then O(rN), where r is number

of faulty processors and N = 27,

Example 1: Consider a ()5 with 4 faulty processors F' Py, F'Py, F'P;, and F'P; whose
addresses are respectively 00011, 00101, 10000, and 11000. The cutting dimension
tree T is constructed in Fig. 2. The cutting set W = {Dy, Dy, D3, Dy, D5} = {(0,
1, 3), (0, 2, 3), (1, 2, 3), (1, 3, 4), (2, 3, 4)} and the mincut value m = 3 will be
obtained if all nodes of T are traversed in the depth-first search. Each of the cutting

dimension sequence in ¥ can construct a single-fault subcube structure F2.

In the next section, we will describe how to select one of the cutting dimension
sequence Dy from the cutting set W = {Dy, Dy, ..., D,} such that the communica-
tion overhead for performing the proposed algorithm is as less as possible. A formal

algorithm for finding the cutting set ¥ and mincut value m is given in the following.

The Partition Algorithm:

Input: An n-dimensional hypercube (), with r faulty processors, for 2 <r <n—1.

Output: The mincut value and cutting set W = {Dy, Dy, ... D,}.

Step 1: Respectively set the initial value of mincut m and cutting set ¥ to n and
o.

Step 2: Traverse cutting dimension tree T, by using the depth-first searching method
until all nodes of T}, are visited. Perform Step 3 when each node in T}, is

visited.

Step 3: The traversal is cutoff if the depth k of the current node is larger than the
current value of mincut. As soon as the node in depth & of T,, labeled by
dy, is visited, each subcube),_x11 is partitioned into two subcubes @), _g
along dimension di. Use the checking tree T'C to check whether the current
cutting dimension sequence D = (dy, da, ..., di) can partition the @, into
a single fault-subcube structure F* or not. If the answer is yes, the cutting
set ¥ and the mincut value will be modified by the following rule: Set ¥
= {D} and mincut = k if the number of cutting dimensions k is less than

the current mincut value; else set ¥ = U U {D}.

The processor utilization in the proposed algorithm is better than the maximum
dimensional fault-free subcubes approach. Assume that the number of faulty proces-

sors r < n—1. The number of dangling processors in the proposed partition algorithm

- 8-

is shown to be less than N/4 as follows. In an n-dimensional hypercube @),,, each pro-
cessor connects to n neighboring processors exactly. Our purpose is to find a F]*. A
faulty processor in the worst case may connect n — 2 neighboring faulty processors.
We will partition the (),, at most n — 2 times along n — 2 different dimensions. The
@, will then be partitioned into F*~2 in which each subcube has 3 normal processors
and 1 faulty or dangling processor. Therefore, the processor utilization is at least
%N in the worst case. When an n-dimensional hypercube has n — 1 faulty proces-
sors, the processor utilization of the maximum fault-free subcubes approach is N/2
(in the best case) and is N/4 (in the worst case). The proposed algorithm will have
better processor utilization than the maximum fault-free subcubes approach. Note
that, the proposed partition algorithm is also suitable for faulty hypercube @), with
r > n faulty processors if no normal processor surrounded by n neighboring faulty

processors exists.

3. Fault-Tolerant Sorting Algorithm

In the previous section, we have described how to find all the cutting dimension
sequences that can partition (), into F* with the minimum value m. In this section,
we will choose one cutting dimension sequence Dy from ¥ and determine the dangling
processor in each fault-free subcube. The fault-tolerant sorting algorithm with pres-
ence of multiple faults will first be presented before describing the heuristic method
of selecting the Ds and determining the dangling processors.

The notation of address for each subcube and processor used in our fault-tolerant
algorithm is first introduced. Assume that the selected cutting dimension sequence is
Dg = (dy, da, ..., dy). An n-dimensional hypercube @),, with address space {t,—1tn—2
...ug} can be partitioned in order along dimensions dy, ds, ..., and d,,. By viewing
each partitioned subcube as a node, the m-dimensional cube consists of 27 nodes
with m-bit address space {v,,_10m_2 ... v0} = {ug, ugq,,_, ... ug - Therest s=n—m
bits form the address space {ws_jw,_y ...wo} of the processors on each subcube. A
()5 with address space {ujuzusuiug} is shown in Figure 5. The cutting dimension
sequence Dg = (0, 1, 3) will partition the ()5 into F: with subcube’s address space
{vav1v9} = {usujup} and 2-dimensional address space {wjwg} = {uguz} of processors
in each subcube.

The proposed fault-tolerant sorting algorithm will now be described. Assume that
M unsorted elements exist. The partitioned hypercube F™ consists of 2™ subcubes,
each having one faulty processor or dangling processor. Since the number of normal
processors is N' = 2" — 27 = N — 2™ the M unsorted elements can be distributed
to N processors and each processor has [M/N'] elements. For a partitioned single-
fault subcube structure F™, we perform the reindex operation on each subcube such
that the address of the faulty processor in each subcube is 0. Then, we perform the
following three sorting steps. Fach processor first sorts its elements in ascending or
descending order according to its reindexed address is even or odd. Secondly, the
bitonic sorting algorithm is applied in each subcube with one faulty processor such
that the [M/2™] elements are sorted in ascending or descending order depending on
the address v,,_1v,,_2 ...vy of subcube is even or odd, respectively. Each subcube
can finally be viewed as a node and perform a bitonic-like sorting algorithm among
subcubes such that the M elements are sorted on (), in the subcubes’ address order.

Our fault-tolerant sorting algorithm is outlined as follows.

- 10 -

Fault-Tolerant Sorting Algorithm:

Input:

Output:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step T7:

(b)

A hypercube (), contains M unsorted elements and a partitioned single-
fault subcube structure [7*. The address of each subcube in F is v, 10,2

...vg and the address of each processor in each subcube is w,_jw,_,. .. wo.
Sorted elements located on F* in the subcubes’ address order.

Perform the reindex operation on each subcube such that the address of

faulty processor in each subcube is 0.

The host processor distributes each normal processor [M/N'] elements,
where N’ = 2" — 2™, This is since 2™ subcubes each exists which has

exactly one faulty processor.

Each processor sorts its elements by applying heapsort operations in ascend-
ing or descending order according to the reindexed address of the processor
is even or odd, respectively. Then the bitonic sorting algorithm is applied
on each subcube with one faulty processor such that the [M /2] elements

are sorted in ascending (descending) order if the address of subcube is even

(odd).
For:=0,1,...,m-1 do Steps 5 through 8.

For each subcube, let variable mask be equal to the value of bit v,y of the

subcube’s address. Assume v, = 0.
For j =14¢,72-1,...,0 do Steps 7 and 8.
For each pair of neighboring subcubes in dimension j:

If v =0 (v; = 1) then each reindexed normal processor sends the first
(last) [M/(2N')] elements of its subsequence to its corresponding reindexed

normal Processor.

If mask = v; (mask # v;), each processor of subcubes compares the un-
sending elements with the receiving elements, reserves the smaller (larger)
element in each comparison and sends the larger (smaller) to its correspond-

ing processor.

- 11 -

(¢) Fach processor merges the two ordered subsequences in ascending or de-
scending order according to the reindexed address of processor is even or

odd, respectively.

Step 8: Applying the bitonic sorting algorithm on each subcube with one faulty
processor, the [M/2™] elements are sorted in ascending (descending) order

if vy = mask (vj_1 # mask). Assume v_; = 0.

For example, consider a ()5 with 4 faulty processors as described in Example 1.
The selected cutting dimension sequence Dg = (0, 1, 3) will partition the Q5 into FZ.
We determine 4 dangling processors, perform the reindex operation on each subcube,
and distribute 47 unsorted elements to reindexed normal processors as shown in Figure
6(a). By applying step 3 of the proposed algorithm, each subcube sorts the assigned
6 unsorted elements in ascending (descending) order if the subcube’s address is even
(odd) as shown in Figure 6(b). In step 4, the index values of 7 running on steps 5
through 8 are 0, 1, and 2. When ¢ = 0 and j = 0, the result of executing steps 7(a)
and 7(b) is shown in Figure 6(c). Each processor then performs the merge operation
of step 7(c). After executing step 8 of the proposed algorithm with i = 0 and j =
0, the temporal result is shown in Figure 6(d). Similarly, when ¢ = 1 and j = 1, the
execution results of steps 7 and 8 are respectively shown in Figure 6(e) and 6(f). The
results of executing steps 7 and 8 with ¢ = 1, j = 0 are shown in Figure 6(g) and
6(h), respectively. Continually performing the steps 7 and 8, all the elements can be
sorted as shown in Figure 6(i).

In the cost estimation given below, symbol ¢,/ denotes the cost of sending or
receiving an element between two neighboring processors; symbol ¢. denotes the time
cost of comparing a pair of elements. The derivation of total time cost T of the
proposed fault-tolerant sorting algorithm is described as follows. The worst case of

time cost for heapsort operations in step 3 is [([%] - l)log[%w + 1] t.. The bitonic

3M"_

sorting operations [15] perform ﬂs;’—?’l loops, each with time cost H%Hs/r + ([577

1)t.]. The total time cost for step 3 is then

(2] - DlogT M 4 1r, 4 8372, 4 (72 - 1))
The hops between two corresponding reindexed normal processors in step 7(a) are at
most s + 1 since they are located in the s-dimensional neighboring subcubes. The
time cost in the worst case for steps 7(a) and 7(b) are respectively (s + 1)[%“5/7’

and (s+1) [%Wis/, + ([%W - 1)t.. The time cost for merge operation in step 7(c) is

- 12 -

([%W - 1)t.. In step 8, the bitonic sorting algorithm performs
time cost H sy + (227 - 1)t.]. Steps 4 and 6 of the proposed algorithm perform

2N/
m(m+3)
2

s(s5+3)
2

loops, each with

loops of steps 7 and 8. The total time cost T" of the proposed fault-tolerant

sorting algorithm in the worst case is then

= [([3F1 - Dlog[371 + 1te + 21t + (13301 - Dt +
mm+3{8+1)(It + (M/W Dte + ([57] - Dte +

LAY, + ([2L] - 1)2]}

(
= O(max([g log[171, m?s*[$71)).

In the previous section, we have the time cost O(r N) for the partitioning algorithm.
The total cost for sorting M elements on n-dimensional hypercube is T' 4+ O(rN).
When the number of unsorted elements is large enough (M >> N), the time cost of
our algorithm is closed to O([%Mog[%}).

The above algorithm is based upon the assumption that the cutting dimension
sequence Dg has been selected from W, with the dangling processor having been
determined in each fault-free subcube. A heuristic method for selecting the Dg and
determining the dangling processors is proposed in the following. Consider each pair of
neighboring subcubes Q,, and Q. . Let faulty processors F'P and F P’ exist and have
the same local reindexed addresses, being respectively located in Q,, and Q. Each
pair of normal processors P and P’, which have the same address, located in respective
subcubes Q,, and Q' will execute the comparison-exchange operations in the bitonic-
like sorting algorithm. The original address of each normal processor will be changed
since all the address of the processors have been reindexed. Processors P and P’
may then not be neighboring after performing the reindex operation and need extra-
communication overhead for message-passing. The extra-communication overhead
between processors P and P’ is the same as the Hamming distance of their respective
faulty processors F'P and F'P'. When Q,, and Q' perform the comparison-exchange
operations along a fixed dimension ¢ (for 0 <7 < m — 1), the extra-communication
overhead h; can be measured by the Hamming distance of the s-bit addresses of faulty
processors I'P and F'P’

h; = HD(FP,FP").

The extra-communication overhead h; of one pair (), and le may be different from
the other pairs. Thus, the max function is taken here to estimate the turnaround

time. The total extra-communication overhead can be estimated by 7" max(h;)

- 13 -

since the bitonic-like sorting algorithm performs the comparison-exchange operations

from dimensions 0 to m — 1. The selected Dg should satisfy the following minmax

function.
m—1
Ognﬁzga ; max(h;). (1)

A dangling processor next needs to be determined in each fault-free subcube such
that the workload for each subcube is balanced. The dangling processor in each
fault-free subcube may be determined by the following heuristic rule: each fault-free
subcube determines a dangling processor whose address w;_jw;_s. .. wq is the same as
the faulty processors’ addresses which appear most frequency in the faulty subcubes.
The communication among these faulty processors and dangling processors can then
be discarded, with the purpose of the low extra-communication overhead being able

to be achieved.

Example 2: Cutting dimension sequence Dy = (0, 1, 3) is selected here in Example
1. The faulty processors F Py, FP,, F'P;, and F Py in I are located in subcubes
with respective addresses 011, 001, 000, and 100 as shown in Figure 5. Three pairs
of faulty processors exist, (F Py, F'Py), (F Py, FPs),and (FPs, F'P;) being located on
neighboring subcubes and their respective Hamming distances are HD(011, 001) =
1, HD(001, 000) = 1, and HD(000, 100) = 1. According to formula (1), the total
extra-communication cost under the selection of Dy = (0, 1, 3) is S7_, maz(h;) =
HD(01, 10) + HD(00, 01) + HD(10, 10) = 3. The selection of a cutting dimension
sequence Dy = (0, 1, 3) with communication overhead 3 is depicted in Figure 5. By
selecting the other cutting dimension sequences Dy = (0, 2, 3), D3 = (1, 2, 3), Dy =
(1, 3,4), and D5 = (2, 3, 4), their respective extra-communication cost can similarly
be obtained as 3, 4, 3, and 3. We may select Dy = Dy = (0, 1, 3) here. A dangling
processor in each fault-free subcube is then determined. Processor with address 10 is
treated as dangling processor in each fault-free subcube since the addresses of faulty
processors wywy = 10 appears most frequency. The dangling processors’ addresses 18,
25, 26 and 27 have finally been obtained by combining the 3-bit address vyviv9 and

2-bit address wywg.

- 14 -

4. Implementation and Performance Analysis

The implementation of the proposed fault-tolerant sorting algorithm on an NCUBE
/7 MIMD hypercube machine which consists of 64 processors each contains 512 K
bytes of local memory will be described in this section. Implementation here logically
treats some processors as faulty nodes and does not assign any unsorted element to
them; the faulty nodes, as a result, can be run idle. The fault model can be classified
into two types. The most serious fault would be one that completely destroys a
processor and all links incident to it. Hastad [9] called such faults total. A less
serious fault, name partial fault [9], would be one that destroys just the computational
portion of a processor leaving the communication portion of the processor intact as
well as the incident links. The data routing in NCUBE/7 is completely determined
by the operating system VERTEX. Since the VERTEX may pass messages through
the links of faulty processors, simulation is constrained in faults partial property. The
faults total property can be achieved by rewriting a router to handle the fault-tolerant
routing of message-passing [7]. The execution time will be more than the partial fault
if the cube @, has the fault total property.

Assume that an n-dimensional hypercube has r faulty processors, where 1 < r <
n — 1. An optimal partition algorithm have been proposed in Section 2 which can
partition the hypercube @), into a single-fault subcube structure F* with the mini-
mum number of cuts. The proposed algorithm determines some dangling processors
for balancing the workload of each subcube. The number of dangling processors is
less than N/4 in the worst case. The relative locations of faulty processors will affect
the value of mincut. For a fixed dimension n and a number of faulty processors r,
the addresses of r faulty processors are randomly generated on hypercubes ¢2,, 10000
times. The percentages of all possible mincut values under fixed n and r, where
3 <n<6and 0 <r <n-—1, are shown in Table 1. For instance, when n = 6
and r = 5, 93.85% cases of (), exist which can be partitioned into F§ (mincut value
m=3) and 6.15% cases exist which can be partitioned into Fy (mincut value m=4).
The smaller the value of mincut is, the fewer the dangling processors will generally
be determined. This indicates that our partition algorithm is biased to small number
of dangling processors in 93.85% cases.

The percentages of processor utilization in proposed algorithm and in the maxi-

mum dimensional fault-free subcubes method can be compared in Table 2. The value

- 15 -

of percentage is evaluated by the ratio of total number of normal processors in original
cube to total number of actually running processors. For instance, when n = 6 and
r = 4, our algorithm will partition the Q)¢ into F§ in the best case (mincut value m
= 2) and no dangling processor exists. Thus, the percentage of processor utilization
is then (2% —4)/(2° — 4) = 100%. Qs in the worst case should be partitioned into F
(m = 3), depending on the locations of faulty processors. The number of dangling
processors is 4 and the percentage of processor utilization is (2° —4 —4)/(2° — 4) =
93.3%. The percentage of processor utilization is 53.3% in the best case and is 26.6%
in the worst case by applying the maximum dimensional fault-free subcubes method.
The proposed algorithm, in comparison, is better than the maximum dimensional
fault-free subcubes method in resource utilization.

The enhancement of processor utilization will reduce the execution time for sort-
ing operations on hypercubes. The proposed algorithm has been simulated on the
n-dimensional hypercubes for n= 3, 4, 5, and 6. In our simulation, the number of
faulty processors is 0 < r < n —1 and the addresses of faulty processors are randomly
generated on each of 10000 simulations for a fixed n and r. The simulation result
of our algorithm is depicted in Figure 7 by thin lines and the maximum dimensional
fault-free subcubes method, i.e., » = 0 by thick lines. In Figure 7(a), the number of
data elements is ranged from 3.2 x 10° to 3.2 * 10*. The execution time of our algo-
rithm in)¢ with r = 1 or r = 2 is shown to be less than the bitonic sorting algorithm
running on the fault-free subcube @5 (n = 5). The execution time of our algorithm
is also less than the bitonic sorting algorithm running on the fault-free subcube Q)4
(n =4) when n =6 and r = 3, 4, or 5. If a hypercube Qs has two faulty processors,
the performance of the proposed algorithm is then better than the maximum dimen-
sional fault-free subcubes method in both its best case n = 5 and worst case n = 4.
The maximum dimensional fault-free subcubes method in the best case can utilize
()s. Although the execution time of our algorithm running on QJ¢ with r =3, 4, or 5
is more than the execution time of bitonic sorting algorithm running on the fault-free
subcube ()5, the probability that ()5 can be utilized is small. The execution time of
the proposed algorithm running on ()5 with r = 1 or 2 being less than the fault-free
subcube Q4 is illustrated in Figure 7(b). The execution time of n = 5 and r = 3
or 4 is also less than the fault-free hypercube (J3. In Example 1, there are 4 faulty
processors with addresses 3, 5, 16, and 24 in (J5. The maximum fault-free subcube

able to be utilized is (J35. The total time cost of the proposed sorting algorithm for

- 16 -

n =5 and r = 4 is less than the bitonic sorting algorithm running on (3. Similarly,
Figures 7(c) and 7(d) display the execution time of the proposed algorithm with n =3
and 4, respectively. The performance of the proposed fault-tolerant sorting algorithm
running on hypercubes shown by simulation results is better than the parallel sorting

algorithms running on the maximum fault-free subcubes.

5. Conclusions

An algorithm-based fault-tolerant sorting algorithm on hypercube multicomput-
ers, without any hardware modification, has been proposed. The bitonic sorting
algorithm has first been indicated to be able to perform sorting operations correctly
on the hypercubes with one faulty processor. As the number of faulty processors was
1 <r < n-—1, apartition algorithm in partitioning a hypercube },, into subcubes has
been proposed here, such that each subcube contains at most one faulty processor.
The proposed partition algorithm has found the mincut value m and cutting set W.
Heuristic methods for selecting one of the partitions in W has been suggested under
the consideration of little communication overhead and determining the dangling pro-
cessor in each fault-free subcube such that the workload of each subcube has been
balanced. A fault-tolerant sorting algorithm based on the partition algorithm has also
been proposed that applies the bitonic sorting algorithm to each subcube and sorts
the elements on faulty hypercubes. Our algorithm has finally been implemented on an
NCUBE/7 MIMD hypercube machine with 64 processors. The execution results has
shown that the performance of our fault-tolerant sorting algorithm on hypercubes has
been better than the parallel sorting algorithms running on the maximum fault-free

subcubes.

17 -

References

M. S. Alam and R. G. Melhem, ” An Efficient Modular Spare Allocation Scheme
and Its Application to Fault Tolerant Binary Hypercubes,” IEEE Transactions
on Parallel and Distributed Systems, Vol. 2, pp. 117-126, Jan. 1991.

J. R. Armstrong and F. G. Gray, "Fault Diagnosis in a Boolean n Cube Array
of Microprocessors,” IEEFE Transactions on Computers, Vol. C-30, No. 8, pp.
587-590, Aug. 1981.

P. Banerjee and J. T. Rahmeh, ” Algorithm-Based Fault Tolerance on a Hyper-
cube Multiprocessor,” IEFEE Transactions on Computers, Vol. 39, No. 9, pp.
1132-1145, Sep. 1990.

J. Berntsen, ”Communication Efficient Matrix Multiplication on Hypercubes,”

Parallel Computing, No. 12, pp. 335-342, 1989.

Kabekode V. 5. Bhat, ”An Efficient Approach for Fault Diagnosis in a Boolean
n-Cube Array of Microprocessors,” [EFEE Transactions on Computers, Vol. 32,
No. 11, pp. 1070-1071, Nov. 1983.

S. C. Chau and A. L. Liestman, ”A Proposal for a Fault-Tolerance Binary Hy-
percube Architecture,” Digest of papers of the International Symposium Fault-
Tolerant Computing, The Computer Society, IEEE, pp. 323-330, 1989.

M. S. Chen and K. G. Shin, ”Adaptive Fault-Tolerant Routing in Hypercube
Multicomputers,” IEEE Transactions on Computers, Vol. 39, No. 12, pp. 1406-
1416, Dec. 1990.

A. C. Elster, M. U. Uyar, and A. P. Reeves, ”Fault-Tolerant Matrix Operations
on Hypercube Multiprocessors,” International Conference on Parallel Process-

ing, Vol. 3, pp. 169-176, 1989.

J. Hastad, T. Leighton, and M. Newman, ”Reconfiguring a Hypercube in the
Presence of Faults,” Proceedings of the 19th Annual ACM Symposium on Theory
of Computing, pp. 274-284, 1987.

S. L. Johnsson, ”Combining Parallel and Sequential Sorting on a Boolean n-

Cube,” International Conference on Parallel Processing, pp. 21-24, 1984.

- 18 -

[11]

[12]

[13]

[19]

V. P. Nelson, "Fault-Tolerant Computing: Fundamental Concepts,” Computer,
pp. 19-25, Jul. 1990.

F. Ozgiiner and C. Aykanat, ”A Reconfiguration Algorithm For Fault Tolerance
in a Hypercube Multiprocessor,” Information Processing Letters, Vol. 29, No.

5, pp. 247-254, Nov. 1988.

D. A. Rennels, ”On Implementing Fault-Tolerance in Binary Hypercubes,” Di-
gest of papers of the International Symposium Fault-Tolerant Computing, The
Computer Society, IEEE, pp. 344-349, 1986.

Y. Saad and M. H. Schultz, " Topological Properties of Hypercube,” IEEFE Trans-
actions on Computers, Vol. 37, No. 7, pp. 867-872, Jul. 1988.

S. R. Seidel and L. R. Ziegler, ”Sorting on Hypercubes,” Proceeding of the Second
Conference on Hypercube Multiprocessors, pp. 285-291, 1987.

C. L. Seitz, "The Cosmic Cube,” Communication of the ACM, Vol. 28, No. 1,
pp- 22-33, Jan. 1985.

J. P. Sheu, C. L. Wu, and G. H. Chen, ”Selection of the First k Largest Processes
in Hypercubes,” Parallel Computing, No. 11, pp. 381-384, 1989.

J. P. Sheu, N. L. Kuo, and G. H. Chen, "Graph Search Algorithms and Maxi-
mum Bipartite Matching Algorithm on the Hypercube Network Model,” Parallel
Computing, No. 13, pp. 245-251, 1990.

S. B. Tien and C. S. Raghavendra, ”Simulation of SIMD Algorithms on Faulty
Hypercubes,” International Conference on Parallel Processing, Vol. 1, pp. 716-
717, 1991.

- 19 -

